Storing XML Data In a Native
Repository

Kamil Toman
ktoman(@ks1.mff.cuni.cz

Dept. of Software Engineering
Faculty of Mathematics and Physics
Charles University



I Introduction

standard for electronic interchange and

* Since 1998 XML has become a very popular
I application data

* XML documents don't need a rigid schema
but they still offer a logical structure

* XML data originate from many different
sources and are very heterogenous

* Greater flexibility creates a strong demand of
XML Databases



XML Querying

* New XML query languages have been pro-
posed — XPath and Xquery

* Both languages use the basic concept of
path expressions

* I[mplementation of these languages on top of
traditional relational and object-relational
database systems is problematic

e Storing XML in object-oriented databases is
iIneffective

* Native XML databases are being developed



SXQ-DB

* Experimental native XML DB to store and
manage collections of XML documents with

a common DTD
* As the query language, SXQ (Simple
Xquery) querying language is implemented

* The general and extensible modular
architecture is built up on XMLCollection
framework



SXQ-DB, Overall Architecture

User Interface

User Interface

Query Processing Module

XML Repository XML Repository




Document Representation

* XML Information Set augmented by relevant
parts of XQuery Data Model

* Oriented tree where to each node is associ-
ated a type and a label, vertices with a com-
mon parent ordered left-to-right

- Text values of elements or attributes are represen-
ted as artificial nodes

- Mixed contents elements are modeled as trees



Document Representation

<text>begin<bf>bold</bf>normal<it>italic</it>end</text>

P L

PCDATA

“begin”

bf

1

text

PCDATA

1

Y

\J
PCDATA

“normal”

}

“bold”

it

1

5

PCDATA

\J
PCDATA

}

“italic”

“end”




Node Identification

* Numbering scheme: a function that assigns
a unique binary identifier to each node

— This id can be used as a reference in an index or
while query evaluation

— Can be used as on document updates
* Primary: sequential numbering scheme
* Secondary: structural numbering scheme

- Allows effective query evaluation utilizing structur-
al joins



Node Identification

(1,100,1)

3

contact

Nname

(11,0,3)J 12

“Joeﬂ

phone

(25,10,3) /m‘ 18

home

(30

0.4) y

6

office

(45,0,4) v 21

“123 234 345”

“192 837 465”




Common Infrastructure

DTD Storage

I e

A ‘\\
| N
|

v .-

Structure Index

y

Element Storage

e

A »

XML Repository Architecture

Value Storage

e (A

Y

Word Index

Value Index




Physical Access To External
Memory

* All XML nodes identifiers, their types and
adjacent node identifiers are stored into
individual fixed-length records in a binary file

* For effective access all records are indexed
In a B+-tree

* Better representation of more complex
relations between nodes is left to structural
Indices

* The system resources are limited — paging
mechanism is used



Object Cache

* XML nodes are accessed frequently but
— the information is mostly short-lived

— Every node must be first looked up in an index
(possibly unbuffered), its respective page has to
be computed and fetched

* To avoid this, secondary object cache is
Implemented

* All cache objects are kept in main memory at
all times and only reinitialized with new data



XML

Quer
I i

Lexical Analyzis

i Symbols

Syntactic Analyzis

i Syntactic tree

Query Normalization

Query Processing Module

XML Repository

i Canonic Tree ument
Information

Query Optimization

1 Data Model 1

>

Plan Generation

Query Plan Evaluation

vy

Query Result




Sources of Difficulties

* Size of indices

- Besides common word or value indices, additional
iIndices are needed for structural joins or effective
tree traversals

* Slow updates:

- Not only data but even the structure of XML
documents may change significantly

- Expensive index updates may be needed

* Generality of XML query languages
- Both XPath and XQuery are Turing-complete



Other Native XML Databases

* TIMBER
— XML tree algebra (TAX) approach
— XQuery subset translated to TAX operations
* eXist
- Lightweight, can manage only small to medium
sized XML documents
- XPath subset + fulltext extensions

* dbXML
- Using B-trees, fully updatable
- Navigational approach + large indices
* Xindice
- XPath fully implemented, navigational approach
- XUpdate supported



I Conclusion & Future Work

I o Efficient XML database is achievable

— Chosen data model is sufficient for implementation
of the most important parts of XQuery

- Managing dynamic XML data is much harder than
static XML documents

* Future work should be probably focused on

- Finding a more general way how to express and
evaluate the most common XML queries

- Reducing space needed for structural and term
indices of the database



References

M. Kopecny (2002): Implementacni prostredi pro kolekce
XML dat (thesis, in Czech). MFF UK.

K. Toman(2003): XML data na disku jako databaze (thesis, in
Czech). MFF UK.

J. Cowan, R. Tobin (2001): XML Information Set.
http.//www.w3.org/TR/xml-infoset

J. Clark, S. DeRose (1999). XML Path Language (XPath 1.0)
http.//www.w3.0rg/TR/xpath

M. Marchiori (2003): XML Query Specifications.
http://www.w3.org/XML/Query#specs

E. Cohen, H. Caplan, T. Milo (2002): Labeling XML Trees.
Symposium on PODS, p. 271-281



