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Motivation

It is almost impossible to index text collections represented
by vector model (VM) due to the curse of dimensionality.
Text Collections represented in LSI model provide slightly
better results in Text Retrieval than vector model, but are
still hard to search efficiently and the computation of
singular value decomposition is expensive.
Other methods of dimension reduction are known, but
were usually used on other types of collections and
distance measures.

=⇒ We are looking for a method of dimension reduction,
which will result in a small intrinsic dimensionality while
preserving the precision and recall of original vector space
model as much as possible.
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Vector Model

Document Di

modeled with a vector di in vector space
j-th coordinate of di represents a weight of j-th term in Di

Document Collection (Corpus)
represented as a term-by-document matrix A
A is very sparse (max 1% nonzero values)
high dimensionality of document vectors (= No. of terms)

Term-by-document Matrix Example

term \ doc. D1 D2 D3 . . . Dm

database 0 0.48 0.05 0.70
vector 0.23 0 0.23 0

. . .
. . .

image 0 0 0.10 0.54
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Queries in Vector Model

Similarity Function
classifies similarity of a document vector di to a query
vector q

cosine measure SIMcos(di , dj ) – cosine of vector deviation
query evaluation made by using the similarity function

range queries (similarity threshold rq)
k -NN queries (searching for k nearest neighbors)

Curse of Dimensionality
Most indexing structures degenerate in higher dimensions – it
is cheaper to use sequential scan. This phenomenon is called
“curse of dimensionality” and we try to lessen its impact by
dimension reduction techniques.
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LSI Model – Singular Value Decomposition

Singular Value Decomposition
The term-by-document matrix A is decomposed to

A = UΣV T

U, V T – column-orthonormal matrices of singular vectors
Σ is a diagonal matrix of singular values

k -reduced Singular Value Decomposition (SVD)
First dimensions are the most important ones =⇒ we use
only k first dimensions; the rest is discarded as “semantic
noise”
Thus we construct the k -reduced SVD as

A = UΣV T ≈ Ak = (UkU0)

(
Σk 0
0 Σ0

) (
V T

k
V T

0

)
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LSI Model – Latent Semantic Indexing

Latent Semantics Indexing Provides
latent semantics – hidden connections between both terms
and documents determined on documents’ content
dimensionality reduction (e.g. from hundreds of thousands
to several hundreds)
the search is term independent, it is concept-based

LSI model partially solves the problem of synonymy and
homonymy
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LSI Model – Model Description

Document and Query Representation
Concept-by-document matrix
Dk = ΣkV T

k × D′
k = V T

k

Reduced query vector
qk = UT

k q × q′
k = Σ−1

k UT
k q

Projection matrix
Pk = UT

k × P ′
k = Σ−1

k UT
k

Term Similarity
Concept-by-term matrix
Tk = UkΣk × T ′

k = Uk
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Random Projection

Random Projection Description
Projection into subspace of suitable dimension by
randomly generated projection matrix R.
Elements of projection matrix are independent random
variables with a zero mean unit variance distribution.

Scaling of projected vector by
√

d
k is applied after

projection to preserve Euclidean distances (for cosine
measure scaling is not needed).
Random projection may not be a projection if matrix R is
not orthogonal.
Orthogonality and normality don’t have to be enforced

projection vectors lengths are already around 1 with
γ-distribution of their squares.
random directions might be close to orthogonal, RT R
approximates identity matrix.
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Random Projection

“Classic” Random Projection
Projection matrix contains Gaussian-distributed random values

rij ∈ N(0, 1)

Simple Random Projection

Projection matrix contains integer values rij ∈ {−1, 0, 1},
computation of projection can be done by addition, final
normalization is applied. Two variants exist:

rij =
√

3.


−1 with probability 1

6

0 with probability 2
3

+1 with probability 1
6 .

rij =

−1 with probability 1
2

+1 with probability 1
2 .
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Approximate LSI Calculation

Approximate LSI by Random Projection
Rank-2k LSI can be used after random projection into a
high-enough dimension l , l > 2k and recovers almost as much
as classical rank-k LSI. The upper bound is

||A− B2k ||2F ≤ ||A− Ak ||2F + 2ε||A||2F

where
||J||2F =

∑
i=1...n

k=1...m

J2
ik

is Frobenius norm.

Approximate LSI by Monte-Carlo Method
Calculates rank-k SVD on randomly-chosen s × s submatrices.



Introduction Projection Methods Projection Properties Qualitative Measures Experiments Conclusion

FastMap

FastMap Description
A pivot-based technique of dimension reduction, suitable
for Euclidean spaces.
Pivots in original & reduced space are recorded, projection
uses the second step of projection algorithm only.

Main Ideas
All points are projected onto a line connecting two
(probably) most distant objects.
Cosine law is used to calculate distance in current
dimension and the distance function is modified.

q
q

q
ai bi

pi

-
xi
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FastMap

Projection Algorithm
1 A random point c0 is chosen.,
2 point bi having maximal distance δ(ci , bi) from ci is chosen,

and based on it we select the point ai with maximal
distance δ(bi , ai),

3 we iteratively repeat step 2 with ci+1 = ai (authors: 5×).

In second step, we use the cosine law to calculate position of
each point on line joining a and b. The coordinate xi of point pi
is calculated as

xi =
δ2(ai ,pi)+δ2(ai ,bi)−δ2(bi ,pi)

2δ(ai ,bi)

and the distance function for next reduction step is modified to
δ′2(p′

i , p′
j ) = δ2(pi , pj)− (xi − xj)

2



Introduction Projection Methods Projection Properties Qualitative Measures Experiments Conclusion

FastMap

Projection Algorithm
1 A random point c0 is chosen.,
2 point bi having maximal distance δ(ci , bi) from ci is chosen,

and based on it we select the point ai with maximal
distance δ(bi , ai),

3 we iteratively repeat step 2 with ci+1 = ai (authors: 5×).

In second step, we use the cosine law to calculate position of
each point on line joining a and b. The coordinate xi of point pi
is calculated as

xi =
δ2(ai ,pi)+δ2(ai ,bi)−δ2(bi ,pi)

2δ(ai ,bi)

and the distance function for next reduction step is modified to
δ′2(p′

i , p′
j ) = δ2(pi , pj)− (xi − xj)

2



Introduction Projection Methods Projection Properties Qualitative Measures Experiments Conclusion

Outline

1 Introduction
Vector Model
LSI Model

2 Other Dimension Reduction Methods
Random Projection
Approximate LSI Calculation
FastMap

3 Projection Properties
Intrinsic Dimensionality
Projection Stress

4 Qualitative Measures
5 Experimental Results

Experiment Setup
Analytical Results
Evaluation Results



Introduction Projection Methods Projection Properties Qualitative Measures Experiments Conclusion

Intrinsic Dimensionality

Consequences of the “Curse of Dimensionality”
Exact search methods are inefficient for high dimensions
In tree-like structures it is usually reflected by huge region
overlaps

each region overlaps the query region =⇒ the search
deteriorates to sequential search

Intrinsic Dimensionality of Metric Spaces
Generalization of the “curse of dimensionality”
Definition, based on distance distribution histograms:

ρ(S, d) = µ2

2σ2

where µ and σ2 are the mean and the variance of the
dataset distance distribution (according to a metric d).
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Intrinsic Dimensionality

Interpretation
higher intrinsic dimensionality =⇒ less structured
collection =⇒ harder filtering of irrelevant objects
the goal is to decrease the intrinsic dimensionality in order
to obtain a better performance of searching methods

Distance Distribution Histograms Example

DDHs indicating (a) low (b) high intrinsic dimensionality
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Projection Stress

Projection Stress Definition
How well are all distances preserved after projection.
The stress of projection f is calculated as

stress =

√√√√√ (
mP

i,j=1
(d ′(f (xi ),f (xj ))−d(xi ,xj ))2

mP

i,j=1
d2(xi ,xj )

where d is the distance function in original and d ′ in
projected space.

Consequences
1 The lower the stress, the better; stress = 0 =⇒ the

projection did not change the distances.
2 When the distances are scaled by some coefficient, the

projection stress may not give us meaningful results.
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Qualitative Measures

Used Qualitative Measures
(P) Precision – fraction of retrieved relevant documents in

retrieved ones.
(R) Recall – fraction of retrieved relevant documents in all

relevant ones.

Usage of Rank Lists
1 Rank list – ordered query result (from the most similar

document).
2 To calculate the precision and recall independently on

required thresholds, the interpolated precision on 11
standard recall levels (0.0, 0.1, . . . , 1.0) is calculated. The
results are presented by P-R curves.

3 We calculated the mean average precision and compared
it with classic vector model.
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Experiment Setup

Text Collection
We used a subset of TREC collection, part of Los Angeles
Times (LATimes) articles (years 1989 and 1990), with
16,889 documents and 49,689 terms after filtration.
Projection of matrix A into dimensions between 50 and
1000 (depending on given method) was calculated.
Random Projection calculation was fastest (≈ 100× than
FastMap), LSI calculation the slowest (≈ 5× than FM)

Queries
50 TREC-8 ad-hoc queries were used for qualitative
evaluation.
Query projection: Random Projection was the fastest
(≈ 2× than LSI), FastMap the slowest (≈ 2.5× LSI)
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Analytical Results

Intrinsic Dimensionality (31.8 for VM )

k LSI FastMap RP RP+LSI
50 25.1 0.2 53.3 46.8
100 51.1 0.5 100.2 93.9
250 121.1 0.9 217.1 206.4
500 – – 343.7 329.7

1000 – – 489.3 –

Projection Stress

k LSI FastMap RP RP+LSI
50 0.210 0.978 0.296 0.247
100 0.224 0.978 0.284 0.259
250 0.242 0.980 0.282 0.270
500 – – 0.279 0.275

1000 – – 0.278 –
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Evaluation Results – Average Precision

Mean Average Precision

k LSI FastMap RP RP+LSI
50 128% 31% 13% 85%

100 155% 58% 24% 98%
250 112% 80% 37% 79%
500 – – 59% 77%
1000 – – 74% –

Average Precision at 100% Recall

k LSI FastMap RP RP+LSI
50 117% 74% 80% 113%
100 124% 88% 88% 118%
250 102% 90% 89% 105%
500 – – 98% 101%

1000 – – 100% –
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Evaluation Results – P-R curves
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Conclusion

Outcome
We compared several dimension reduction methods from
different angles.
While LSI is the best one, we run into problems when
trying to decompose a greater collection. The FastMap (or
approximate LSI) may suffice.

Future Work
We may speed-up the FastMap calculation by sampling or
some heuristics.
In future, we plan to use greater collection (omitting LSI)
and newly proposed methods such as SparseMap and
MetricMap.
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