Vector Model Improvement by FCA and Topic Evolution

Petr Gajdoš Jan Martinovič

Department of Computer Science, VŠB - Technical University of Ostrava, tř. 17. listopadu 15, 708 33 Ostrava-Poruba Czech Republic Petr.Gajdos@vsb.cz Jan.Martinovic@vsb.cz

April, 2005

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Outline					

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Vector Model
- Formal Concept Analysis
- 2 Vector Model Improvement
 - Obtaining the importances of documents by FCA
 - Topic Evolution
- Illustrative samples
- 4 Conclusion
- 5 Future Work

Background ●000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Vector I	Model				

• A query is represented by m dimensional vector

$$q=\left(q_{1},q_{2},\ldots,q_{m}\right),$$

where $q_i \in \langle 0, 1 \rangle$.

• Each document d_i is represented by a vector

$$d_i = (w_{i1}, w_{i2}, \ldots, w_{im})$$

• An index file of the vector is represented by matrix, where

- *i*-th row matches *i*-th document
- *j*-th column matches *j*-th term

$$D = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1m} \\ w_{21} & w_{22} & \dots & w_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \dots & w_{nm} \end{pmatrix}$$

Background ●000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Vector	Model				

• A query is represented by m dimensional vector

$$q=\left(q_1,q_2,\ldots,q_m\right),$$

where $q_i \in \langle 0, 1 \rangle$.

• Each document d_i is represented by a vector

$$d_i = (w_{i1}, w_{i2}, \ldots, w_{im})$$

• An index file of the vector is represented by matrix, where

- *i*-th row matches *i*-th document
- *j*-th column matches *j*-th term

$$D = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1m} \\ w_{21} & w_{22} & \dots & w_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \dots & w_{nm} \end{pmatrix}$$

Background ●000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Vector	Model				

• A query is represented by m dimensional vector

$$q=\left(q_1,q_2,\ldots,q_m\right),$$

where $q_i \in \langle 0, 1 \rangle$.

• Each document d_i is represented by a vector

$$d_i = (w_{i1}, w_{i2}, \ldots, w_{im})$$

• An index file of the vector is represented by matrix, where

- *i*-th row matches *i*-th document
- *j*-th column matches *j*-th term

$$D = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1m} \\ w_{21} & w_{22} & \dots & w_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \dots & w_{nm} \end{pmatrix}$$

- **Coefficient of similarity** is a "distance" between the document's vector and the vector of the query
- Cosine measure:

$$sim(q, d_i) = \frac{\sum_{k=1}^{m} (q_k w_{ik})}{\sqrt{\sum_{k=1}^{m} (q_k)^2 \sum_{k=1}^{m} (w_{ik})^2}}$$
$$sim(d_i, d_j) = \frac{\sum_{k=1}^{m} (w_{ik} w_{jk})}{\sqrt{\sum_{k=1}^{m} (w_{ik})^2 \sum_{k=1}^{m} (w_{jk})^2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background OOOOO Vector Model Improvement OOOOO IIIIustrative samples Formal Concept Analysis

- A Formal context C := (G, M, I) consists of two sets G, M and one relation I between G and M.
 - elements of G are called objects
 - elements of M are called attributes

If object $g \in G$ has an attribute $m \in M$, we write gIm or $(g, m) \in I$.

• The Incidence matrix

GM	m ₁	m ₂	•••	m
\mathbf{g}_1	0	1	••	1
\mathbf{g}_2	1	0		1
•••				
$\mathbf{g}_{\mathbf{k}}$	1	1		0

Background Vector Model Improvement Illustrative samples Conclusion Future Work References Formal Concept Analysis Conclusion Future Work References

• For a set $A \subset G$ of objects we define

$$A^{\uparrow} = \{m \in M \mid glm \text{ for all } g \in A\}$$

-the set of attributes common to the objects in A.

• Correspondingly, for a set $B \subset M$ of attributes we define

$$B^{\downarrow} = \{g \in G \mid glm \text{ for all } m \in B\}$$

-the set of objects which have all attributes in B.

A formal concept of the context (G, M, I) is a pair (A, B) with A ⊆ G, B ⊆ M, A[↑] = B and B[↓] = A. We call A the extent and B the intent of the concept (A, B).

Background Vector Model Improvement Illustrative samples Conclusion Future Work References Formal Concept Analysis Conclusion Future Work References

• For a set $A \subset G$ of objects we define

$$A^{\uparrow} = \{m \in M \mid glm \text{ for all } g \in A\}$$

-the set of attributes common to the objects in A.

• Correspondingly, for a set $B \subset M$ of attributes we define

$$B^{\downarrow} = \{g \in G \mid glm \text{ for all } m \in B\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

-the set of objects which have all attributes in B.

A formal concept of the context (G, M, I) is a pair (A, B) with A ⊆ G, B ⊆ M, A[↑] = B and B[↓] = A. We call A the extent and B the intent of the concept (A, B).

Background
0000000

Vector Model Improvement

Illustrative samples

Conclusion

Future Work References

Formal Concept Analysis

GM	т 1	т ₂ 1	т ₃ 1	т ₄ 1	т ₅ 1	т ₆ 1	т ₇ 1
g 1	x		x	х	х	x	
g ₂		х	х				
g ₃	х	х		х	х	х	х
\mathbf{g}_4	х	х	х			х	
<u> </u>							
	m ₁	m ₂	m ₃	m_4	m ₅	m ₆	m ₇
\mathbf{G}	1	1	1	1	1	1	1
\mathbf{g}_1	x		х	х	х	x	
\mathbf{g}_2		x	x				
g ₃	х	х		х	х	х	х

х

X X X

g₄

Diversity of object

$$do(g) = \sum_{m:m\in M \text{ and } (glm)\in I} \lambda(m)$$

Sum of diversities of objects

$$sdo(C) = \sum_{g:g \in C} do(g)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

Background ○○○○○●○ Vector Model Improvement

Illustrative samples

Conclusion

Future Work References

Formal Concept Analysis

GM	т 1	т ₂ 1	т ₃ 1	т ₄ 1	т ₅ 1	т ₆ 1	m ₇ 1
g ₁	х		х	х	х	х	
\mathbf{g}_2		х	х				
g ₃	х	х		х	х	х	х
g 4	х	х	х			х	

Diversity of concept Let *S* is the set of objects of the concept *C*.

$$v(S) = \sum_{m \in \mathcal{M}: (g,m) \in I \hspace{0.1 cm} \textit{for some } g \in S} \lambda(m)$$

It appears from Conjugate Moebius Function.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Following formula has been obtained from observation and experiments

$$impo(g) = \sum_{C:C
ightarrow g} rac{sdo(C)}{v(S)} \ \lambda(A) \ do(g)$$

where S is the set of objects and A is the set of attributes of the concept C.

- stor(C)/v(S) The range of covered attributes (words).
 It depends on weights of attributes and differences betwee objects of selected concept.
- $\lambda(A)$ The weight of unique attributes.
- do(g) The weight of attributes owned by object (document).
 This is used for objects' differentiation in the same concept.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Following formula has been obtained from observation and experiments

$$impo(g) = \sum_{C:C
ightarrow g} rac{sdo(C)}{v(S)} \ \lambda(A) \ do(g)$$

where S is the set of objects and A is the set of attributes of the concept C.

- sdo(C)/v(S) The range of covered attributes (words).
 It depends on weights of attributes and differences between objects of selected concept.
- $\lambda(A)$ The weight of unique attributes.
- do(g) The weight of attributes owned by object (document). This is used for objects' differentiation in the same concept.

• Following formula has been obtained from observation and experiments

$$impo(g) = \sum_{C:C
ightarrow g} rac{sdo(C)}{v(S)} \ \lambda(A) \ do(g)$$

where S is the set of objects and A is the set of attributes of the concept C.

- $\frac{sdo(C)}{v(5)}$ The range of covered attributes (words). It depends on weights of attributes and differences between objects of selected concept.
- $\lambda(A)$ The weight of unique attributes.
- do(g) The weight of attributes owned by object (document). This is used for objects' differentiation in the same concept.

- ロ ト - 4 回 ト - 4 □ - 4

• Following formula has been obtained from observation and experiments

$$impo(g) = \sum_{C:C
ightarrow g} rac{sdo(C)}{v(S)} \ \lambda(A) \ do(g)$$

where S is the set of objects and A is the set of attributes of the concept C.

- $\frac{sdo(C)}{v(5)}$ The range of covered attributes (words). It depends on weights of attributes and differences between objects of selected concept.
- $\lambda(A)$ The weight of unique attributes.
- do(g) The weight of attributes owned by object (document). This is used for objects' differentiation in the same concept.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vector Model Improvement

Illustrative samples

Conclusion

Future Work R

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

References

Obtaining the importances of documents by FCA

Background 0000000	Vector Model Improvement ○●000	Illustrative samples	Conclusion	Future Work	References
Topic E	Evolution				

- Evolution of topic
 - documents may use different words to describe the same theme
 - list of documents related to theme, which is described by query
 - result of query
 - a query may consists of whole document.
- Clusters generation
 - TOPIC-CA algorithm
 - TOPIC-FCA algorithm
- Reordering algorithm
 - SORT-EACH alg. moves all documents in a result of the vector model query so that the documents belonging to the same evolution of topic are closer to each other. It calls CA or FCA Topic algorithm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Background 0000000	Vector Model Improvement 0000	Illustrative samples	Conclusion	Future Work	References
Topic E	volution				

- Evolution of topic
 - documents may use different words to describe the same theme
 - list of documents related to theme, which is described by query
 - result of query
 - a query may consists of whole document.
- Clusters generation
 - TOPIC-CA algorithm
 - TOPIC-FCA algorithm
- Reordering algorithm
 - SORT-EACH alg. moves all documents in a result of the vector model query so that the documents belonging to the same evolution of topic are closer to each other. It calls CA or FCA Topic algorithm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Background 0000000	Vector Model Improvement ○●000	Illustrative samples	Conclusion	Future Work	References
Topic E	Evolution				

- Evolution of topic
 - documents may use different words to describe the same theme
 - list of documents related to theme, which is described by query
 - result of query
 - a query may consists of whole document.
- Clusters generation
 - TOPIC-CA algorithm
 - TOPIC-FCA algorithm
- Reordering algorithm
 - SORT-EACH alg. moves all documents in a result of the vector model query so that the documents belonging to the same evolution of topic are closer to each other. It calls CA or FCA Topic algorithm.

Background	Vector Model Improvement ००●००	Illustrative samples	Conclusion	Future Work	References
Topic E	alution				

TOPIC-CA algorithm

- Next we choose the total number of documents in each topic ('level').
- On Then we find leaf cluster which contains selected relevant document.

We pass through the hierarchy.

- We explore neighbouring clusters. First we select the cluster created on the highest sub-level. Each document, which we find, we add to the result list. When the count of all documents in the result list equals to 'level' we break finding.
- Go to the step 3 (we are going to compute Topic Evolution for next document).

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Tonic F	Volution				

- Next we choose the total number of documents in each topic ('level').
- Then we find leaf cluster which contains selected relevant document.
- We pass through the hierarchy.
- We explore neighbouring clusters. First we select the cluster created on the highest sub-level. Each document, which we find, we add to the result list. When the count of all documents in the result list equals to 'level' we break finding.
- Go to the step 3 (we are going to compute Topic Evolution for next document).

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Tonic F	Volution				

- Next we choose the total number of documents in each topic ('level').
- Then we find leaf cluster which contains selected relevant document.
- We pass through the hierarchy.
- We explore neighbouring clusters. First we select the cluster created on the highest sub-level. Each document, which we find, we add to the result list. When the count of all documents in the result list equals to 'level' we break finding.
- Go to the step 3 (we are going to compute Topic Evolution for next document).

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Tonic F	Volution				

- Next we choose the total number of documents in each topic ('level').
- Then we find leaf cluster which contains selected relevant document.
- We pass through the hierarchy.
- We explore neighbouring clusters. First we select the cluster created on the highest sub-level. Each document, which we find, we add to the result list. When the count of all documents in the result list equals to 'level' we break finding.
- So to the step 3 (we are going to compute Topic Evolution for next document).

Background	Vector Model Improvement ○0●00	Illustrative samples	Conclusion	Future Work	References
Tonic E	volution				

- Next we choose the total number of documents in each topic ('level').
- Then we find leaf cluster which contains selected relevant document.
- We pass through the hierarchy.
- We explore neighbouring clusters. First we select the cluster created on the highest sub-level. Each document, which we find, we add to the result list. When the count of all documents in the result list equals to 'level' we break finding.
- Go to the step 3 (we are going to compute Topic Evolution for next document).

Background 0000000	Vector Model Improvement ○00●0	Illustrative samples	Conclusion	Future Work	References
Topic E	volution				

TOPIC-FCA algorithm

• We make the query transformation. It means that we create weighted vector of terms.

- We compute the importances of documents (objects) and we make the list of the documents and their importances.
- 3 We find the relevant document rel_d in the ordered list.
- In finite steps, we look for "nearest" documents. The "nearest" document is the document, that has the smallest difference between its weight and the weight of *rel_d*. Founded document is excluded before repeating of this step.

Background 0000000	Vector Model Improvement ○00●0	Illustrative samples	Conclusion	Future Work	References
Topic E	volution				

- We make the query transformation. It means that we create weighted vector of terms.
- We compute the importances of documents (objects) and we make the list of the documents and their importances.
- We find the relevant document rel_d in the ordered list.
- In finite steps, we look for "nearest" documents. The "nearest" document is the document, that has the smallest difference between its weight and the weight of *rel_d*. Founded document is excluded before repeating of this step.

Background 0000000	Vector Model Improvement ○00●0	Illustrative samples	Conclusion	Future Work	References
Topic E	volution				

- We make the query transformation. It means that we create weighted vector of terms.
- We compute the importances of documents (objects) and we make the list of the documents and their importances.
- **③** We find the relevant document rel_d in the ordered list.
- In finite steps, we look for "nearest" documents. The "nearest" document is the document, that has the smallest difference between its weight and the weight of *rel_d*. Founded document is excluded before repeating of this step.

Background 0000000	Vector Model Improvement ○00●0	Illustrative samples	Conclusion	Future Work	References
Topic E	volution				

- We make the query transformation. It means that we create weighted vector of terms.
- We compute the importances of documents (objects) and we make the list of the documents and their importances.
- **③** We find the relevant document rel_d in the ordered list.
- In finite steps, we look for "nearest" documents. The "nearest" document is the document, that has the smallest difference between its weight and the weight of *rel_d*. Founded document is excluded before repeating of this step.

Vector Model Improvement

Illustrative samples

Conclusion

Future Work Re

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

References

Vector Model Improvement

Illustrative samples

Conclusion

Future Work References

Topic Evolution - SORT-EACH algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Vector Model Improvement

Illustrative samples

Conclusion

Future Work References

Vector Model Improvement

Illustrative samples

Conclusion

Future Work Re

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

References

Vector Model Improvement

Illustrative samples

Conclusion

Future Work References

Vector Model Improvement

Illustrative samples

Conclusion

Future Work F

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

References

Vector Model Improvement

Illustrative samples

Conclusion

Future Work R

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

References

Vector Model Improvement

Illustrative samples

Conclusion

Future Work Ref

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

References

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへの

5 7 3 2 10 1 6 8 9 11 4

Topic Evolution - SORT-EACH algorithm

Vector Model Improvement

Illustrative samples

Conclusion

Future Work

References.

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References

C
. U
į

query	$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$		
	$t_1 t_2 t_3 t_4 t_5 t_4 t_7 t_8 t_9 t_{10} t_{11} t_{12}$	Document's importance	Vector query
doc. 1	1 1 1 1	66.66666667	0.57735
doc. 2	1 1 1	38	0.5
doc. 3	1 1 1	36	0.5
doc. 4	1 1 1	36	0.5

Table: The results after inserted query "111111111111"

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Illustrati	ve samples				

query	1 1 1 1 1 1 1 1 1 1 1 1 1		
	t ₁ t ₂ t ₃ t ₄ t ₅ t ₄ t ₇ t ₈ t ₉ t ₁₀ t ₁₁ t ₁₂	Document's importance	Vector query
doc. 1	111 1	66.66666667	0.57735
doc. 2	1 1 1	38	0.5
doc. 3	1 1 1	36	0.5
doc. 4	1 1 1	36	0.5

Table: The results after inserted query "111111111111"

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Illustrati	ve samples				

query	1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	$t_1 t_2 t_3 t_4 t_5 t_4 t_7 t_8 t_9 t_{10} t_{11} t_{12}$	Document's importance	Vector query
doc. 1	1 1 1 1	66.66666667	0.57735
doc. 2	1 1 1	38	0.5
doc. 3	1 1 1	36	0.5
doc. 4	1 1 1	36	0.5

Table: The results after inserted query "111111111111"

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	Re

erences

Illustrative samples

query	0 0	0	1	1	1	0	0	0	0	0	0		
	$t_1 t_2$	t3	t4	t_5	t4	t7	t ₈	t9	t_{10}	t_{11}	t_{12}	Document's importance	Vector query
doc. 1			1	1			1	1	1	1	1	94.93333333	0.436436
doc. 2			1	1	1			1				53.2	0.866025
doc. 3					1	1	1	1				47	0.288675
doc. 4								1	1	1	1	26	0

Table: The results after inserted query "000111000000"

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Illustrat	ive samples				

query	0	0	0	1	1	1	0	0	0	0	0	0		
	t_1	t_2	t ₃	t ₄	t_5	t ₄	t ₇	t ₈	t9	t_{10}	t_{11}	t_{12}	Document's importance	Vector query
doc. 1				1	1			1	1	1	1	1	94.93333333	0.436436
doc. 2				1	1	1			1				53.2	0.866025
doc. 3						1	1	1	1				47	0.288675
doc. 4									1	1	1	1	26	0

Table: The results after inserted query "000111000000"

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Illustrat	ive samples				

query	0	0	0	1	1	1	0	0	0	0	0	C		
	t_1	t_2	t3	t4	t_5	t4	t7	t ₈	t9	t_{10}	t_{11}	t_{12}	Document's importance	Vector query
doc. 1				1	1			1	1	1	1	1	94.93333333	0.436436
doc. 2				1	1	1			1				53.2	0.866025
doc. 3						1	1	1	1				47	0.288675
doc. 4									1	1	1	1	26	0

Table: The results after inserted query "000111000000"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	Ref

Illustrative samples

query	0	0	0	1	1	1	0	0	0	0	0	0		
	t_1	t_2	t3	t4	t_5	t4	t7	t ₈	t9	t_{10}	t_{11}	t_{12}	Document's importance	Vector query
doc. 1								1	1	1	1	1	41.86111111	0
doc. 2				1	1	1			1				44.5	0.866025
doc. 3						1	1	1	1				45.83333333	0.288675
doc. 4									1	1	1	1	28.6	0

Table: The results after inserted query "000111000000"

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References

query	0	0	0	1	1	1	0	0	0	0	0	0		
	t_1	t ₂	t ₃	t ₄	t_5	t ₄	t ₇	t ₈	t9	t_{10}	t_{11}	t_{12}	Document's importance	Vector query
doc. 1								1	1	1	1	1	41.86111111	0
doc. 2				1	1	1			1				44.5	0.866025
doc. 3						1	1	1	1				45.83333333	0.288675
doc. 4									1	1	1	1	28.6	0

Table: The results after inserted query "000111000000"

0000000	00000	lilustrative samples	Conclusion	Future vvork	References
Illustrati	ve samples				

query	0	0	0	1	1	1	0	0	0	0	0	0		
	t_1	t ₂	t3	t4	t_5	t4	t7	t_8	t9	t_{10}	t_{11}	t_{12}	Document's importance	Vector query
doc. 1								1	1	1	1	1	41.86111111	0
doc. 2				1	1	1			1				44.5	0.866025
doc. 3						1	1	1	1				45.83333333	0.288675
doc. 4									1	1	1	1	28.6	0

Table: The results after inserted query "000111000000"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Conclusi	ion				

- We have described new method for vector query improvement based on formal concept analysis and Moebius inverse function.
- The known deficiencies of vector model have been suppressed using TOPICs and SEARCH-EACH algorithms.
- Our presented methods can be applied on small data sets or on large collections of documents.

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Future \	Nork				

- test our method on large data collections
- improve all algorithms by usage sparse matrix based on finite automata
- usage this method for collection preprocessing according to specific dictionaries (mathematic, medicine, ...)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Referen	ces I				

📎 Berry, M. W (Ed.)

Survey of Text Mining: Clustering Classification, and Retrieval. Springer Verlag 2003.

🛸 Ganter B.. Wille R.

Formal Concept Analysis. Springer-Verlag, Berlin, Heidelberg, 1999.

📎 C.J. van Rijsbergen

Information Retrieval (second ed.). London, Butterworths, 1979.

Duráková, D., Gajdoš, P.

Indicators Valuation using FCA and Moebius Inversion Function. DATAKON, Brno, 2004, IBSN 80-210-3516-1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Background 0000000	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References
Referen	ces II				

Dvorský J., Martinovič J., Pokorný J., Snášel V.

A Search topics in Collection of Documents.(in Czech). Znalosti 2004, ISBN: 80-248-0456-5.

Keith Van Rijsbergen

The Geometry of Information Retrieva. Cambridge University Press, 2004.

Kummamuru K, Lotlikar R., Roy S., Singal K., Krishnapuram R.

A Hierarchical Monothetic Document Clustering Algorithm for Summarization and Browsing Search Results. WWW2004, New York, USA.

📄 Nehring, K.

A Theory of Diversity. Ecometrica 70, 1155-1198, 2002.

Background	Vector Model Improvement	Illustrative samples	Conclusion	Future Work	References

Thank you for your attention.