On classification of XML document transformations

Jana Dvořáková FMFI UK, Bratislava jana.dvorakova@dcs.fmph.uniba.sk

DATESO 2005

Outline

- Introduction
- Formalization of XML concepts
- Classification hierarchy
- Type transformations
- Formal models
- Conclusion

Introduction

- XML popular standard for production of structured documents
 - document standards, data exchange between applications
- Various transformations needed
- Many transformation systems exist, based on different techniques
 - SynDoc, Scrimshaw, TREX, XSLT, Grif, Thot, VXT, CoST,...

Aims

- 1. to define classification of XML document transformations
- 2. to examine relationships among defined groups of transformations

Formalization of XML concepts (1)

XML document

 tree, where internal nodes are elements and leaves contain textual content

Document Type

- context-free grammar
- valid XML documents derivation trees

Restrictions

- XML documents without attributes
- element names from finite and known set

Formalization of XML concepts (2)

Transformation

- set of pairs of trees (d_1, d_2)
 - d_1 tree representing source XML document
 - d_2 tree representing target XML document

Transformation model:

Classification hierarchy (1)

Different possible criteria

driving element, scope, purpose, level of user interaction, transformational power, source and target correctness...

Basic groups:

- Source grammar transformations
- Target grammar transformations
- Two grammar (type) transformations
- In each group different transformation techniques used

Classification hierarchy (2)

Type transformations

- Transformation specification is created by grammar mapping
- Both source and target corectness
- Formal models used:
 - Syntax directed translation schema (SDTS)
 - Tree transformation grammar (TTG)
 - Descending tree transducer (DTT)
 - Higher order attribute grammar (HAG)
- 1. Common framework development
- 2. Mutual comparison

Formal models - SDTS (1)

- Translates a sentence of a source grammar (w_s) into a sentence of a target grammar (w_t) according to translation groupings
- Simulates derivation of both sentences from the start symbol simultaneously
- Sentential form = current frontiers of the source tree and the target tree

Translation grouping:

$$A \to u_1 \dots u_n, v_1 \dots v_m$$

Translation:

$$(S,S) \Rightarrow ... \Rightarrow (xAy, x'Ay') \Rightarrow (xu_1 \dots u_n y, x'v_1 \dots v_m y') \Rightarrow ... \Rightarrow (w_s, w_t)$$

Formal models - SDTS (2)

- Standard defininition is not suitable in the case of XML
- Extension proposed: trees as sequential forms
- First sequential form source derivation tree,
 last sequential form target derivation tree

Formal models - SDTS (3)

Translation step:

Formal models - comparison

Results obtained by comparing syntax directed translation schema (SDTS), descending tree transducer (DTT) and their modifications:

	SDTS	ESDTS	d-DTT	DTT
SDTS		Ç	⊉	Ç
ESDTS	\bigcap		N	N
d-DTT	¢	N		\subseteq
DTT	\bigcap	N	\supseteq	

Conclusion

- Summary of results:
 - formal definitions of XML concepts
 - classification for XML document transformations introduced
 - formal models for two grammar transformations defined in common framework
 - several results of comparing these formal models
- Future work:
 - add other comparisons of formal models
 - include attribute transformations

Thank you for your attention!