
Dept. of Computer Science & Engineering, Czech Technical University, Prague
Department of Computer Science, VŠB – Technical University of Ostrava

Department of Software Engineering, Charles University, Prague
Czech Society for Cybernetics and Informatics, Workgroup on Computer

Science & Informatics, Prague

Proceedings of the Dateso 2005 Workshop

Databases, Texts

Specifications, and Objects

2005
http://www.cs.vsb.cz/dateso/2005/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

April 13 – 15, 2005
Desná – Černá Ř́ıčka

http://www.cs.vsb.cz/dateso/2005/

DATESO 2005
c© K. Richta, V. Snášel, J. Pokorný, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz

Faculty of Electrical Engineering and Computer Science,
VŠB – Technical University of Ostrava

Page count: 150
Impression: 150
Edition: 1st

First published: 2005

This proceedings was typeset by PDFLATEX.
Cover design by Tomáš Skopal (tomas@skopal.net) and Pavel Moravec (pavel.moravec@vsb.cz).
Printed and bound in Ostrava, Czech Republic by TiskServis Jǐŕı Pustina.

Published by Faculty of Electrical Engineering,

Czech Technical University in Prague

Preface

DATESO 2005, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 13 – 15, 2005 in Desná – Černá Ř́ıčka. This was the 5th

annual workshop organized by FEL ČVUT Praha, Department of Computer
Science and Engineering, MFF UK Praha, Department of Software Engineering,
and VŠB-Technical University Ostrava, Department of Computer Science. The
DATESO aims for strengthening the connection between this various areas of
informatics. The proceedings of DATESO 2005 are also available at DATESO
Web site http://www.cs.vsb.cz/dateso/2005/.

The Program Committee selected 12 papers from 15 submissions, based on
two independent reviews.

We wish to express our sincere thanks to all the authors who submit-
ted papers, the members of the Program Committee, who reviewed them
on the basis of originality, technical quality, and presentation. We are also
thankful to the Organizing Committee and Amphora Research Group (ARG,
http://www.cs.vsb.cz/arg/) for preparation of workshop and its proceedings.

March, 2005 K. Richta, V. Snášel, J. Pokorný (Eds.)

http://www.cs.vsb.cz/dateso/2005/
http://www.cs.vsb.cz/arg/

Program Committee

Karel Richta (chair) Czech Technical University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Jaroslav Pokorný Charles University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš University of P. J. Šafárik, Košice

Organizing Committee

Pavel Moravec VŠB-Technical University of Ostrava
Michal Valenta Czech Technical University, Prague
Yveta Geletičová VŠB-Technical University of Ostrava

Table of Contents

Comparison of parallel and random approach to a candidate list in the
multifeature querying . 1
Peter Gurský

Finite State Automata as a Data Storage . 9
Marian Mindek, Martin Hynar

Characteristics of cosymmetric association rules . 20
Michal Burda, Marian Mindek, Jana Šarmanová

Text Compression: Syllables . 32
Jan Lánský, Michal Žemlička

Vector model improvement by FCA and Topic Evolution 46
Jan Martinovič, Petr Gajdoš

Unsupervised clustering with growing self-organizing neural network –
a comparison with non-neural approach . 58
Martin Hynar, Michal Burda, Jana Šarmanová

On classification of XML document transformations 69
Jana Dvořáková

Multimedia information extraction from HTML product catalogues 84
Martin Labský, Pavel Praks, Vojtěch Svátek, Ondřej Šváb

Text mining tool for ontology engineering based on use of product
taxonomy and web directory . 94
Jan Nemrava, Vojtěch Svátek

Relational Data Mining and GUHA . 103
Tomáš Karban

Testing Dimension Reduction Methods for Text Retrieval 113
Pavel Moravec

Query Optimization by Genetic Algorithms . 125
Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

Author Index . 138

Comparison of parallel and random approach to
a candidate list in the multifeature querying∗∗

Peter Gurský

Institute of Computer Science, Faculty of Science
P.J.Šafárik University in Košice, Jesenná 9, 040 01, Košice, Slovak Republic

gursky@upjs.sk

Comparison of parallel and random approach to
a candidate list in the multifeature querying

Peter Gurský

Institute of Computer Science, Faculty of Science??

P.J.Šafárik University Košice
Jesenná 9, 040 01, Košice

gursky@upjs.sk

Abstract. In the field of the multifeature querying it is possible to
use many heuristics to retrieve top k objects to became low number
of accesses to the sources. When the sources have many equal values,
it is often hard to choose which source should be accessed next. In this
paper we compare previous random approach with the parallel approach
to the set of actual candidate sources.

Key words: multifeature querying, top-k objects, aggregation

1 Introduction

Many times we want to find the best object or top k objects in the possible huge
set of objects. The reason of which object is better than the other, is based on
the properties of the objects. Such properties are typically fuzzy. For example,
when we want to find top k hotels, we can look at a distance from the beach,
price per night, number of stars, travel expenses, etc. We need is to specify, how
to compute the overall score of each object to became the order of the objects.
Moreover all these particular data can be accessible by different sources (web
services).

There are several algorithms in this area, solving this problem. Ronald Fagin
introduced ”Fagin’s algorithm”, which solves this problem first time [6]. Fagin
et al. [2] presented ”threshold” algorithm that made the search much faster.
Güntzer et al. [1] defined ”quick-combine” algorithm using first heuristic. Other
heuristics was presented by P. Gurský and R. Lencses [4].

The ”quick-combine” algorithm was originally developed over multimedial
data. Such a data are typically continuous i.e. it is very unusual to have two
objects with the same value of a property. The experimental comparison of the
heuristics [4] showed, that the heuristics used in [1] is quite ineffective, when

?? This work was partially supported by the grant VEGA 1/0385/03 and ’Štátna úloha
výskumu a vývoja ”Nástroje pre źıskavanie, organizovanie a udržovanie znalost́ı
v prostred́ı heterogénnych informačných zdrojov” prierezového štátneho programu
”Budovanie informačnej spoločnosti”.’

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 1–8, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

2 Peter Gurský

the sources have few discretized values, e.g. number of stars of hotels. In this
paper, we show a possible improvement of the performance of this heuristic
over discretized data. We also try to use the same approach to other relevant
heuristics presented in [4].

In chapter 2 we describe a formal model of data. In chapter 3 we present
a generalized version of all mentioned algorithms and compare three different
heuristics. The experimental comparison of the heuristics is showed in chapter
4. Chapter 5 concludes our paper.

2 Model

Assume we have a finite set of objects. Cardinality of this set is N . Every object
x has m attributes x1, . . . , xm. All objects (or identificators of objects) are in
lists L1, . . . , Lm, each of length N . Objects in list Li are ordered descending
by values of attribute xi. We can define two functions to access objects in lists.
Let x be an object. Then si(x) is a grade (or score, rank) of object x in list the
Li and ri(j) is an object in list the Li in the j-th position. Using the function
si(x) we can realize the random access1 to the lists. The second type of access
we will use, is the sorted access2. Using this type of access the grades of objects
are obtained by proceeding through the list sequentially from the top.

We have also monotone aggregation function F , which combine grades of
object x from lists L1, . . . , Lm. The overall value of an object x we denote as
S(x) and it is computed as F (s1(x), . . . , sm(x)).

Our task is to find top k objects with highest overall grades. We also want to
minimize time and space. That means we want to use as low sorted and random
accesses as possible.

3 Generalized Threshold algorithm and heuristics

For each list Li, let ui = si(ri(zi)) be the value of the attribute of the last
object seen under sorted access, where zi is the number of that possition. Define
the threshold value τ to be F (u1, . . . , um). Because we assume that we have
a monotone aggregation function F and the lists are sorted descend by their
values, the threshold τ is the value, which none of still unseen objects can reach
[2]. Hence when all objects in the top k list have their values greater or equal to
the threshold, then this top k list is the final and there is none unseen object with
greater value. This property is very important to have the algorithm correct.

Let z = (z1, . . . , zm) be a vector, which assigns for each i = 1, . . . , m the
position in list Li last seen under sorted access. Let H be a heuristic that decides
which list (or lists) should be accessed next under sorted access (notice that

1 Random access - direct access via an indexing mechanism. Please do not confuse
this term with the term ”random approach”. The random approach to a set means,
that we choose one element of this set randomly.

2 Sorted access - sequential access to a sorted list.

Comparison of parallel and random approach . . . 3

heuristics can change during the computation). Moreover, assume that H is
such, that for all j ≤ m we have H(z)j = zj or H(z)j = zj+1 and there is at
least one i ≤ m such that H(z)i = zi+1. The set {i ≤ m : H(z)i = zi + 1} we
call the set of candidate lists (or simply candidates) for the next sorted access.

In this paper we use three types of heuristics.
First heuristic (denote H1) does the sorted access in all m lists parallelly.

It means, that for each i ≤ m holds H(z)i = zi+1. This heuristic was firstly
presented by Fagin et al. [2] in the ”Threshold algorithm”. This kind of heuristic
we use only (if ever) in the first phase of computation to retrieve the beginnings
of the lists. Next two heuristics are used in the rest of computation.

The use of the ((δF/δx)∗∆x) heuristic (H2) was firstly presented by Güntzer
et al. [1] as a part of ”Quick-combine algorithm”. Let us look at the next non-
equality. To keep algorithm correct, for each object x in the final top k list must
hold:

S(x) = F (s1(x), . . . , sm(x)) ≥ τ (1)

Hence, when we can say, that this non-equality holds, we have the final top
k list. Obviously, there are two ways to make (1) hold: to increase the left side
or to decrease the right side. Heuristic H2 tries to decrease τ as fast as possible.
As a criterion for a list Li, i ≤ m to be given to the set of candidates for the
next sorted access, is to have ∆i maximal. ∆i is defined as:

∆i =
(

δF

δxi
(s1(ri(zi)), . . . , sm(ri(zi)))

)−
∗ (si(ri(zi − p))− si(ri(zi))) (2)

The constant p is some suitable (small) natural number. Hence ∆i is the
multiplication of the partial derivative of aggregation function F from the left
in the point (s1(r1(z1)), ..., sm(rm(zm))) and the expected change of values in
p steps (∆x factor) of the i-th list. When we have ∆i for each i ≤ m, we can
set the value of H(z)i. Heuristic H2 sets H(z)i=zi+1 if ∆i =max{∆j ; j ≤ m}.
Otherwise H(z)i=zi. The only necessary condition we required from F is the
continuity from the left.

The (δF/δx) ∗ x) heuristic (H3) is a variation of the last one. This heuristic
was presented by Gurský et al.[4] at the first time. Instead of the ∆x factor, H3
chooses an x-factor, thus the last seen value in the i-th list. The criterion for
this heuristic is:

χi =
(

δF

δxi
(s1(ri(zi)), . . . , sm(ri(zi)))

)−
∗ si(ri(zi)) (3)

The criterion (3) computes the partial derivation of F from the left in
the point (s1(r1(z1)), ..., sm(rm(zm))) and multiply it with value in the point
si(ri(zi)) in Li. This heuristic sets H(z)i=zi+1 if χi = max{χj ; j ≤ m}. Oth-
erwise H(z)i=zi. We need the continuity from the left for the function F again.

4 Peter Gurský

99,99% 99,99%

100,00% 100,00% 100,00%

100,00%

100,00%

104,32%

110,56%

118,90%

126,37%

129,98%

126,06%

163,65%

98,97%
97,09%

93,09%

97,61%
99,45%

96,37%
104,50%

1 5 10 20 30 50 100
k

δ F/δ x(x)
δ F/δ x(Δ x)
x/Δ x switch

Fig. 1. Change of performance using parallel approach (benchmark data)

When the aggregation function is the simple weighted mean, the derivation
used by these heuristics is a constant, more precise it is the weight of the at-
tribute.

Now we can describe the generalized Threshold algorithm:

0. z:=(0,. . . ,0), in case of algorithms ((δF/δx) ∗∆x) or ∆x/x, set the suitable
small natural p.

1. Set the heuristic H:
• ((δF/δx) ∗ x): H:=H3
• ((δF/δx) ∗∆x): if any zi < p then H:=H1; otherwise H:=H2
• ∆x/x: if any zi < p then H:=H1; otherwise if H=H1 then H:=H2; if

H=H2 then H:=H3; and if H=H3 then H:=H2.
2. • parallel approach: Do the sorted access in parallel to each of the sorted

lists to all positions where H(z)i = zi+1. Put zi = H(z)i .
• random approach: Do the sorted access to randomly chosen sorted list

Li where H(z)i = zi+1. Put zi = zi + 1 and for each j ≤ m, j 6= i do
nothing.

3. First control: Compute the threshold value τ . As soon as at least k objects
have been seen whose grade is at least equal to τ , then go to step 6.

4. For every object x that was seen under sorted access in the step 2, do the
random access to the other lists to find the grade si(x) of object in every
list. Then compute the grade S(x) = F (s1(x), . . . , sm(x)) of object x. If this
grade is one of the k highest ones we have seen, then remember object x and
its grade S(x).

Comparison of parallel and random approach . . . 5

99,88% 99,88% 99,88% 99,91% 99,93% 99,94% 99,96%

149,84%

181,24%

165,47%

191,94%

180,78%

158,96%

204,23%

108,92%

88,04%

76,06% 74,33%

91,19%

134,57%

120,00%

1 5 10 20 30 50 100
k

δ F/δ x(x)
δ F/δ x(Δ x)
x/Δ x switch

Fig. 2. Change of performance using parallel approach (artificial data)

5. Second control: As soon as at least k objects have been seen whose grade is
at least equal to τ , then go to step 6, otherwise go to step 1.

6. Let Y be a set containing the k objects that have been seen with the highest
grades. The output is then the graded set {(x, S(x)) : x ∈ Y }.

Individual algorithms differ in the steps 2 and 3. Shortly the (δF/δx)∗x) algo-
rithm use heuristic H3 directly on beginning. The Quick-combine (or ((δF/δx)∗
∆x)) algorithm use for the first p steps in each list the heuristic H1 and than the
heuristic H2. The ∆x/x algorithm use for first p steps in each list the heuristic
H1, too. After that it switches between the heuristics H2 and H3.

Original algorithms choose the random approach in the step 3. All mentioned
algorithms can have their ”parallel variant” too. In our experiments we compare
all 6 possible variants.

4 Experiments

4.1 Testing data

Benchmark data The first sort of data are real data that come from ran-
domly generated queries in information retrieval system with support of rela-
tional database. We used different combinations of local and global weights as
different ways for weighting of occurrences of terms in documents to generate 6
sets of benchmark data. Each set include over 25 000 objects (documents) with
50 different attributes (terms). To measure all particular experimental results we

6 Peter Gurský

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 5 10 20 30 50 100
k

SA
+R

A

δ F/δ x(x)
δ F/δ x(Δ x)-par
x/Δ x switch
δ F/δ x(Δ x)

Fig. 3. Number of all accesses (benchmark data)

compare the average values from 6 sets of these benchmark data with the use of
aggregation functions with randomly chosen weights for each list. Histograms of
data are exponential - there is very low number of objects with high values and
a lot of objects with low values. Such distribution is typical in the information
retrieval area but in many other areas too.

Artificial data The second sort of data were generated with various distribu-
tion of values. We used 2 exponential and 2 logarithmic distributions with 10000
objects and 6 types of aggregation functions. The values of the attributes was
rounded to 10 discrete values. Such a discretisation is quite common in real data
e.g. number of stars of hotels, rating classes of companies, and other human pro-
duced ratings. Finest discretisation can be e.g. prices of some product or a guess
for the length of a trip. Continuous data are typical for some physical experi-
ments, precise measurements or multimedial data. In this paper we focus on the
discrete data. Using different combination of the source data and aggregation
functions we became 16 different inputs for algorithms. In the final results we
use the averages of the particular results.

4.2 Results

In our experiments we wanted to compare the random and parallel approach to
the set of candidates. On the figure 1 and 2 we take as the base the random ap-
proach (=100%). We can see the performance of the parallel approach compared

Comparison of parallel and random approach . . . 7

0

2000

4000

6000

8000

10000

12000

14000

1 5 10 20 30 50 100
k

SA
+R

A

δ F/δ x(x)
δ F/δ x(Δ x)-par
x/Δ x switch
δ F/δ x(Δ x)

Fig. 4. Number of all accesses (artificial data)

with the random approach for each heuristic. Both artificial and benchmark data
shows, that different approach to the candidates does not change anything for
the (δF/δx) ∗x heuristic. For the x/∆x heuristic the random approach seems to
be better in most cases.

In our results, the new parallel approach positively improved the performance
of the (δF/δx)∗∆x heuristic over discretised values. This heuristics was originally
developed for multimedial data. Using our improvement this heuristic can be
quite efficient over discretized data too, but as we can see in figures 3 and 4
when we work over discretized values the new approach to the (δF/δx) ∗ ∆x
heuristic is still not better than quite stable x/∆x heuristics.

Why we have such a results? The parallel version of the (δF/δx)∗x algorithm
has almost same results as its random variant maybe because there was almost
none situation in which we had more than one candidate in the candidate set.
On the other side the (δF/δx) ∗∆x algorithm had many such a situations. The
reason of this situation is the fact, that the expression (si(ri(zi−p))−si(ri(zi)))
almost always equals to zero for small p and discrete values in the lists. As
experiments show, for this heuristic when we don’t know to prefer one list, it is
better to access all lists. For the x/∆x heuristic seem the random approach to
be better when k is greater or equals to 5.

8 Peter Gurský

5 Conclusions

We proposed the new parallel approach to the candidate set and compare it
with the previous random approach. We experimentally showed that this type
of approach improved the (δF/δx)∗∆x heuristic over discrete data. On the other
hand the x/∆x heuristic keeps its first place in lower number of accesses as was
shown in [4].

References

1. U.Güntzer, W.Balke, W.Kiessling Optimizing Multi-Feature Queries for Image
Databases, proceedings of the 26th VLDB Conference, Cairo, Egypt, 2000

2. R.Fagin Combining fuzzy information from multiple systems, J. Comput. System
Sci., 58:83-99, 1999

3. R.Fagin, A.Lotem, M.Naor Optimal Aggregation Algorithms for Middleware, proc.
20th ACM Symposium on Principles of Database Systems, pages 102-113, 2001

4. P.Gurský, R.Lencses Aspects of integration of ranked distributed data, proc.
Datakon , ISBN 80-210-3516-1, pages 221-230, 2004

5. R.Fagin Combining Fuzzy Information: an Overview, ACM SIGMOID Record 31,
Database principles column, pages 109-118, 2002

6. R.Fagin Combining fuzzy information from multiple systems, 15th ACM Sympo-
sium on Principles of Databases Systems, pages 216-226, 1996

7. P.Gurský, R.Lencses, P.Vojtáš Algorithms for user dependent integration of ranked
distributed information, technical report, 2004

Finite State Automata as a Data Storage

Marian Mindek and Martin Hynar

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic

{marian.mindek, martin.hynar}@vsb.cz

Finite State Automata as Data Storage

Marian Mindek, Martin Hynar

Katedra informatiky, FEI, VŠB – Technická Univerzita Ostrava, 17. listopadu 15,
708 33, Ostrava-Poruba

{marian.mindek, martin.hynar}@vsb.cz

Abstract. In this paper, we summarize ideas to use finite automata as a tool for
specification and compression of data aggregates (e.g. images, electrical
signals, waves, large (sparse) matrixes, etc.). We describe different ways of data
access. Then we describe an approach how make a resultant automata with
included interesting information, how to focus on interesting information in our
data, and how to link together resultant automata.

Keywords: finite automata, compression, large sparse matrix, searching,
pattern

1 Introduction

Finite automata is an useful tool for matrix representation of commonly used
information resources (e.g. images, texts, sound waves, electrical signals etc.), for
their compression and for obtaining interesting information about given data
[1,2,4,5,7,8,9].
 In our opinion, such technique could be used also to represent large matrixes,
which are usually hard to manipulate. A traditional approach (compression using
common algorithms) solves only part of the problem. It consumes less space but on
the other hand, there is no way to make changes to original matrix. Moreover, there is
no way to use another additional information and if it is required it has to be
computed using other means (e.g. nearest neighbors of some 1-position, interest
points, carrier, base, etc.). With our approach, we can focus at this issue and improve
predication capabilities about data. The resultant automaton (or automata) contains
this interesting information. We can use it for comparing per pattern or search similar
information (e.g. part of faces, medical pictures, buildings tracing, part of large sparse
matrixes, similar noise, similar trends, etc.).
 If we want to have certain benefit from such advantages and if we want to have
some mean to store matrixes in database with included interesting information, we
can use the approach of storing resultant automata in some well known structure such
as table, matrix or XML.
 In the following examples we describe for simplicity our approach on the images,
if will not remark alternatively.

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 9–19, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

10 Marian Mindek, Martin Hynar

2 Data specification

2.1 Finite State Automata (FSA)

Background about automata theory in this chapter is the most necessary. We describe
only simple procedure for storing matrixes to automata too. For more about automata
theory please read [6] and for more about automata as a tool for specifying image,
please read [3,4,5,7].
 In order to facilitate the application of FSA to matrix description we will assign
each pixel at 2n x 2n resolution (2n for vector) a word of length n over the alphabet
Σ={0,1,2,3} for basic approach and Σ={0,1} for offset (read vector) approach, as its
address. Offset (vector) approach is useful for matrix approach too.

Example. The large sparse matrix can by represented as set of coordinates [x, y]
where x is a row and y is a column. If we separate x part and y part we obtain two
vectors. These vectors can have value as set of positions in matrix, or difference
between previous and followed position.

A part at 2n x 2n (2n) resolution corresponds to a sub-part of size 2-n of the unit part.
We choose ε as the address of the whole unit part. Single digits as shown in figure 1a;
on the left address its quadrants. The four sub-squares of the square with address w
are addressed w0, w1, w2 and w3, recursively. Addresses of all the sub-squares
(pixels) of resolution 4 x 4 are shown in figure 1, middle. The sub-square (pixel) with
address 3203 is shown on the right of figure 1. Clearly for offset (vector) approach is
sub-part with address w denoted only as w1 and w2, recursively. For comparison see
figure 1b, black part of vector has address 1101.

Fig. 1. The addresses of the quadrants, of the sub-square of resolution 4 x 4, and the sub-square

specified by the string 3203.

For simplicity, in the following we describe theory only for matrixes. (Offset) vectors
approach is very similar.
 In order to specify a binary matrix of resolution 2m x 2m, we need to specify a
language L ⊆ Σm. Frequently, it is useful to consider multi-resolution images, sounds
or el. signals simultaneously specified for all possible resolutions (discriminability),
usually in some compatible way (We denote Σm the set of all words over Σ of the
length m, by Σ* the set of all words over Σ).
 In our notation a binary matrix is specified by a language L ⊆ Σ*, Σ={0,1,2,3}, i.e.
the set of addresses of all the evaluated squares.

Finite State Automata as a Data Storage 11

 A word in the input alphabet is accepted by the automaton if there exists labeled
path from the initial state to the final state. The set (language accepted by automaton
A) is denoted L(A).

Example. The 2 x 2 chessboards in figure 2 (a) look identically for all resolutions.
The multi-resolution specification is the regular set {1,2}Σ*. The 8 x 8 chessboard in
figure 2 (b) is described by the regular set Σ2{1,2}Σ* or by FSA A figure 2(c).

Fig. 2. 2 x 2, 8 x 8 chessboards and corresponding automaton.

Note that here we used the fact that the regular expression Σ2{1,2}Σ* is the
concatenation of two regular expression Σ2 and {1,2}Σ*.

Example. By placing the triangle L= L1L2 where L1= {1,2}*0 and L2=Σ* into all
squares with addresses L3={1,2,3}*0 we get the image L3L={1,2,3}*0{1,2}*0Σ*
shown at the left of figure 5.

 Zooming [3] is easily implemented for matrixes represented by regular sets
(automaton) and is very important for loss compression.

Fig. 3. The diminishing triangles defined by {1,2,3}*0{1,2}*0Σ*, and the corresponding
automaton.

We have just shown that a necessary condition for binary matrixes to be represented
by a regular set (FSA) is that it must have only a finite number of different sub-
matrixes in all the sub-squares with addresses from Σ*. We will show that this
condition is also sufficient. Therefore, matrixes that can be perfectly (i.e. with infinite
precision for loss compression) described by regular expressions are matrixes of
regular or fractal character. Self-similarity is a typical property of fractals. Any matrix
can by approximated by a regular expression however; an approximation with a
smaller error might require a larger automaton. Multi-resolution (fractal) principle is
at most useful for images, sounds, and descriptions of function or electrical signals.

12 Marian Mindek, Martin Hynar

2.2 Basic procedure

Our algorithm for matrix compression (both approaches) is based on basic procedure
for black-and-white images proposed in [4], but it will use evaluated finite automata
(like WFA) introduced in [3] and only replacing black and white color to real values,
without possibility to create loops and adding some option for setup compression and
facilitation storage for likely representation.

Example. For the image diminishing triangles in figure 3, the procedure constructs
the automaton shown at the right-hand side of figure 3. First, the initial state D is
created and processed. For sub-square with address 0 a new state T is created, for
addresses 1,2 and 3 create the new states with deep n (where deep is length of route
from the root and n is length of part of word w with the same symbol; loop of edge
from previous algorithm). Then state T* is processed for sub-square with address 0
and new state S is created, for 1 and 2 a connection to a last of new states. There is no
edge labeled 3 coming out of T since the quadrant 3 for T (triangle) is empty (in
binary matrix there is 0 everywhere). Finally, the state S (square) is processed by
creating edge back to S for all four inputs. In this way it represents end of automaton
or loop to state itself for multi-resolution approach.

 Now we demonstrate in brief a generalized method for matrix compression
applicable on construction of resultant matrix storage, or matrix database with
included information presented furthermore. There lead four edges from each node at
most (for offset approach lead two edges at most) and these are labeled with numbers
representing matrix / vector part. Every state can store information of average value
of sub-part represented thereby state.
 The procedure Construct Automaton for compression terminates if exists an
automaton that perfectly (or with small-defined error) specifies the given matrix and
produces a deterministic automaton with the minimal (interpret as optimal for our
problem solution) number of states. The count of states can be reduced a bit or
extended by changing error or do tolerance for average values of matrix part. This
principle is naturally useful only for matrixes, where we can obtain matrix
reconstructed with small error (only if we make tolerance, it is loss-compression.)
 Changing the part (or only one matrix element) in source matrix can change the
count of states in resultant automata. We can use certain principle to optimize this
algorithm for non-recompress all matrix. Details are described in the furthermore in
the text.

Procedure Construct Automaton for Compression
For given matrix M (in arbitrary representation e.g. full matrix, difference vector, [x,
y] representation, etc.), we denote Mw the zoomed part of M in the part addressed w,
where w∈{0,1,2,3...X}. For simplicity we use w∈{0,1}, see figure 1. The matrix
represented by state numbered x is denoted by ux.

Procedure Construct Automaton for Compression
 i = j = 0
 create state 0 and assign u0 = M (matrix represented by empty word and define
 average value of M)
 assume ui = M w

Finite State Automata as a Data Storage 13

 loop
 for k ∈ {0,1} do
 if Mwk = uq (or with small error, only for loss compression)
 or if the matrix Mwk can be expressed as a part or expanded part of
 the matrix uq for some state q
 then create an edge labelled k from state i to state q
 else j = j + 1
 uj = M wk
 create an edge labelled k from state i to the new state j
 end if
 end for
 if i = = j than
 Stop (all states have been processed)
 else i = i + 1
 end if
 end loop
end procedure

It is clear, that procedure for vector (offset) approach is very similar. We do not
describe it, but we give some confrontation later.
 Procedure for reconstruction matrixes from automaton is very simple, for more
information see [9].

2.3 Tests

Every test was carried out on standard PC with Intel Celeron 1,3GHz and 384MB
RAM. We used two different algorithms for computing resultant automata without
loss compression, but results are very similar, such that we describe only one of the
results. Tested data was generated randomly. Some of the test matrixes correspond
with the worst test data (for our procedure) for comparison.
 In table 1 there are depicted matrixes and corresponding counts of evaluated
elements. The last column contains counts of similar parts of matrixes. Sizes of these
parts are between 1/16 - 1/128, for larger matrixes. Maximum range of similar parts is
6 for matrix with 32000x32000 elements. This setup is only for testing, real data are
generally more similar but we show tests for worse cases of data. In next comparison,
we test matrixes without similar parts. The resultant automata were perfectly (without
loss) representing the source matrix.
 In table 2 there are depicted results of our tests. In first column there are source
matrixes, in second resulting time for procedure with using vector approach and then
follow two columns with counts of state of corresponding resultant automata. In last
two columns there are times for procedure using full matrix (Procedure Construct
Automaton for Compression described before) and counts of states of resultant
automata.

14 Marian Mindek, Martin Hynar

Table 1. The tested matrixes.

Matrix Count of elements Similar parts
67 2 128 x 128
57 0
128 2 256 x 256
124 0
266 2 512 x 512
244 0
515 2 650 x 650
526 0
533 3 1024 x 1024
500 0

1035 2 2048 x 2048
1011 0
2058 2 4096 x 4096
2022 0
4000 3 8192 x 8192
4059 0

16000 x 16000 1 0
8193 4 16384 x 16384
8000 0

32000 x 32000 9000 6
64000 x 64000 18124 0

Table 2. The results of tests. From the left: source matrixes, time for offset approach in

seconds, count of states of resultant automata for X and Y parts, time for classical procedure
and counts of states of resultant automata.

Matrix time (XY) X states Y states time states

0,1 72 132 0,1 134 128 x 128
0,1 111 119 0,2 118
0,3 129 254 0,8 271 256 x 256
0,3 163 249 0,9 280
0,3 310 516 1,2 552 512 x 512
0,5 289 491 2,3 516
1 427 813 4,5 1080 650 x 650
1 419 835 3 1126

1,1 740 1027 4,9 1120 1024 x 1024
1,2 593 1003 5 1044
1,2 1008 1028 16 2161 2048 x 2048
1,2 1279 2027 16 2145
1 2019 4049 70 4289 4096 x 4096
1 2016 2052 50 4353

2,6 4010 7350 110 5350 8192 x 8192
3 4304 3890 86 5112

16000 x 16000 0,1 13 13 240 14
5 6218 8192 180 6308 16384 x 16384

5,5 5905 8100 190 6100
32000 x 32000 6,5 4929 8190 NA NA
64000 x 64000 16 8111 10450 NA NA

Highlighted row is the worst case for our solution for matrix approach (Source matrix
contains only one element at unlikely position.) It is clear that offset approach is faster
for larger matrixes but produces more states. Matrix approach is better for

Finite State Automata as a Data Storage 15

compression of small matrixes. If we want to have more compressed large matrix then
the matrix approach is useful too but at the expense of machine time. For lucidity see
following graph, where time is only on informative scale.

Graph 1. Graph of results from Table 2 for offset approach, where

count of states is X states plus Y states.

Graph 2. Graph of results from Table 2 for matrix approach.

Graph 3. Comparing of presented approach.

16 Marian Mindek, Martin Hynar

2.4 Changes in source

In this section we describe in brief, how to solve the changes in the matrix. If we
compress the matrix with traditional algorithm (e.g. zip, LZW, Huffman, etc.) and
some element is changed, we must re-compress all matrixes every time. But if we
represent matrix as a FSA, we can change/re-compress only the corresponding part of
resultant automaton, the one with changed element.
 There exist at least three basic solutions for selection of corresponding part of
Finite State Automata or corresponding sub-square of source matrix:

1) Re-calculating the biggest corresponding sub-square:
This approach leads to a big quantum of data manipulation (up to one quarter), but
with this approach we can reach the high compression ratio. The method is useful for
all types of source matrixes.

2) Re-calculating the least corresponding sub-square:
This approach re-calculates the least quantum of data (approximately tens elements),
but with this approach we can gain only very small compression ratio and changes
often lead to the growth of the automata. Compression become here the disutility, but
if we want only obtain the interesting information from our resultant automata, this
method is useful too. This approach is useful for all types of source matrixes.

3) Re-calculating the optimal corresponding sub-square:
Retrieval of such sub-square may be difficult, but in most cases, it shows that it has
no sense to work with sub-square greater than three or four least corresponding sub-
squares. Naturally, it greatly depends on the character of the matrixes. If we know that
the matrixes contain many equal blocks, we can state the amount of levels which we
should still take in consideration. This choice naturally has not influence on
algorithm, but only on machine time and resultant size of compressed matrixes.

3 Resultant aggregate / database

3.1 Resultant automata

Composition is useful for storing resultant FSA in one structure with value-added
information. In this section, we describe only necessary generalized procedure, for
more information read [9]. This procedure can be used for both approaches; object
oriented and prevailing approach. This approach can be simply upgraded to loss-
composition and makes possible to save more space and setup some additional
options. We focus on this in future work.

Procedure Composition Automaton for Storage
For given automaton A and automaton B (resultant automaton from previously
composition) compute new resultant automaton B´∈A∪B and combine similar parts
of both ones.

Finite State Automata as a Data Storage 17

Procedure Composition Automaton (Automaton A, Stored automaton B)
 Assign state qx from A to the corresponding state in stored automaton B.
 if such case does not exists, assign a new state and take qx+1 from A.
 end if
 for all state of automaton A do
 if not exists edge from state qi labeled with same word w as edge from
 correspond state in stored automaton then
 create a new edge labeled w to a new state i
 otherwise
 take next edge
 end if
 if all edges from actual state is processed, take next state
 end if
 end for
end procedure

This principle can be used for no-loss or loss compression for saving matrixes.
Additional information can be obtained from structure of resultant automaton, for
example the information about the similarity of the stored matrixes or its parts,
common lines, etc. We can also easily get the group of equal matrix parts.

3.2 Focus on a interesting information

 If we store the source matrixes in more than one automaton, we can focus on the
interesting part of the matrix and compute the automaton with various lengths. This
principle was introduced in [10].
 On other part of matrix, we can compute automaton with less number of states.
For this purpose, we can use the pattern matrix shown in table 3, where the values in
cells are the counts of profundity of automaton, which represents that part of matrix.
This matrix can be used for some image, see figure 4. This principle can be used only
for loss compression (e.g. images, signals, etc.). The part with less count of states
stores much fewer information than the part with more states.
 It is clear that with this principle we can save much more space preserving high
information value of data. We can transfer only interesting part of matrix or any
nearest part and save machine time or network capacity. It is sufficient to choose a
state from resultant automata, which represents the interesting part of the matrix, and
operate with this as with the root. This principle is used in the automata composition.
Procedure for focusing on interesting information is very simple. Pattern may be
arbitrary.
 Now we have a background for using finite state automata as a database with
included information.

Procedure Focus on interesting information
For given matrix M and pattern matrix P compute resultant automaton. This
procedure use procedure Construct Automaton for Compression (CAfC), there in
before.

18 Marian Mindek, Martin Hynar

Procedure Focus on interesting information (Matrix M, pattern matrix P)
 i = j = 0
 create state 0 and assign u0 = M
 assume ui = M w
 loop
 for x ∈ S (part of pattern matrix)
 assume |w|= P(ui)
 i = CAfC(M, new w)
 j++;
 end for
 if i = = j than
 Stop (all parts from pattern are processed)
 else S = S + 1
 end if
 end loop
end procedure

Table 3. Example pattern for procedure Focus on interesting information

2 2 2 2 2 2 2 2 2 2 ... 2
2 2 3 3 3 3 3 3 3 2 ... 2
2 2 3 4 4 4 4 4 3 2 ... 2
2 2 3 4 5 5 5 4 3 2 ... 2
2 2 3 4 5 6 4 4 3 2 ... 2
2 2 3 4 5 5 5 4 3 2 ... 2
2 2 3 4 4 4 4 4 3 2 ... 2
2 2 3 3 3 3 3 3 3 2 ... 2
2 2 2 2 2 2 2 2 2 2 ... 2

Fig. 4. Example image with used focus on interesting information.

Finite State Automata as a Data Storage 19

4 Conclusions

In this paper was summarized an idea to use finite state automata as a tool for
specification and compression of data aggregates. We compared two basic approaches
of computing the resultant automata, namely: the matrix approach and the vector (or
offset) approach. The first one is better applicable for representation and compression
of smaller matrixes and for manipulation after decompression. The vector approach is
pretty faster for larger matrixes, but on the other hand it produces more states. If we
want to have large matrix to be more compressed (independently on the machine
time) then the matrix approach is useful too. Both methods can be loss or loss-free,
and both types have high predicate ability about stored matrixes and save space and
network capacity.
 The linked resultant automaton is able to create matrix database with included
value and to make manipulation with matrixes easier. We also described simple and
generalized procedure focus on interesting information in the source data and some
illustrative results were shown. This procedure can make a better compression ratio
together with maintaining the high information level of data.

5 References

1. Alur, R. and Dill, D. L. A Theory of Timed Automata. In Theoretical Computer
Science, 126(2):183–235, 1994.

2. Daniela Berardi, Fabio De Rosa, Luca De Santis and Massimo Mecella. Finite
State Automata as Conceptual Model for E-Services. In Integrated Design and
Process Technology, IDPT- 2003, June 2003.

3. K. Culik II and J. Kari. Image compression using weighted finite automata. In
Computers & Craphics, 17:305–313, 1993.

4. K. Culik II and V. Valenta. Finite automata based compression of bi-level and
simple color images. In Computers & Craphics, 21:61–68, 1997.

5. K. Culik II and J. Kari. Image compression Using Weighted Finite Automata, in
Fractal Image Compression. In Theory a Techniques, Ed. Yuval Fisher, Springer
Verlag, pp 243-258, 1994.

6. J.E.Hopcroft and J.D.Ullman. Introduction to automata theory, languages and
computation. In Addison-Wesley, 1979.

7. Marian Mindek. Finite State Automata and Images. In Wofex 2004, PhD
Workshop, Ed. V. Snášel, ISBN: 80-248-0596-0, 2004

8. Marian Mindek. Finite State Automata and Image Recognition. In Dateso 2004,
Ed. V. Snášel, J. Pokorný, K. Richta, pp 132-143, ISBN: 80-248-0457-3, 2004

9. Marian Mindek. Finite State Automata and Image Storage. In Znalosti 2005, Eds.
Lubomír Poplínksý, Michal Krátký, ISBN: 80-248-0755-6

10. Marian Mindek. Konečné automaty jako obrázky s multi-rozlišením. In posters
Znalosti 2005

11. W3C (2004) XML Protocol. XML Protocol Web Page http://www.w3.org/XML
(January 2005)

Characteristics of cosymmetric association rules

Michal Burda, Marian Mindek, and Jana Šarmanová

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic

{michal.burda, marian.mindek, jana.sarmanova}@vsb.cz

Characteristics of cosymmetric association rules

Michal Burda, Marian Mindek, Jana Šarmanová

Dept. of Computer Science, FEI, VŠB – Technical university of Ostrava,
17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic
{Michal.Burda, Marian.Mindek, Jana.Sarmanova}@vsb.cz

Abstract. Association rules are essential data mining tool and as such
has been well researched. Many new types of association rules based on
both categorial or quantitative data have been founded ([8], [7], [2], [4]).
Our work is directed to the theoretical features of association rules; espe-
cially, we study a specific class of association rules called δ-cosymmetric
rules. We present here some interesting properties of such rules and pro-
vide a definition of rules expressing the significant difference in position,
as an example. We show here that even the usual implicational rules are
special cases of δ-cosymmetric rules.

Key words: Cosymmetric rules, association rules, typed relations, data
mining

1 Preface

This paper is intended to motivate the rise of a new class of association rules
called δ-cosymmetric rules. First of all, we describe here briefly the notions of
the Logic of typed relations used to write the association rules down (for more
information see [6]). After that, we provide some motivating examples of the
representative cosymmetric rule types. We also study several features of the δ-
cosymmetric rules and define the δ-cosymmetric rule of significant difference in
position. The end of this paper is dedicated to some notes on how to mine the
δ-cosymmetric rules.

2 Logic of typed relations

In [6], we have developed the Probabilistic Logic of Typed Relations (PLTR)
suitable for the formal association rules representation. In this section we briefly
and informally describe main notions of that logic to understand the meaning
of its formulae.

The main notion of PLTR is typed relation. Typed relation can be simply
viewed as a data table with finite number of columns and rows. Each column
represents one attribute and a set of such attributes is a type of the relation.

A typed relation is similar to classical concept of mathematical relation. We
can perform usual set operations as union (∪), intersection (∩) or difference

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 20–31, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

Characteristics of cosymmetric association rules 21

Fig. 1. Selection and projection on the relation R.

(−). Furthermore, there exist two crucial relational operations: selection and
projection. Selection is an unary operation of the form

R(c1 ∧ c2 ∧ ¬c3)

where R is typed relation and c1 ∧ c2 ∧ ¬c3 is a formula called selection con-
dition. Selection is used to select only the rows satisfying the given condition.
For example, when R is a data table (typed relation) of university students, the
selection

R(age > 25)

picks only the students older than 25. The projection on relation R is an unary
operation of the form

R[A1, A2, . . . , An].

The projection is used to take out only several columns (attributes) of the rela-
tion R. The choosed attributes are simply written in the comma-separated list
in the brackets. The projection

R[name, date of birth]

results simply in the two-column data table with student’s basic personal infor-
mation. Obviously, we can combine selection and projection together to pick up
an arbitrary sub-relation of the original typed relation, e.g.

R(age > 25)[name, date of birth],

which results in a relation of basic personal information of students older than
25. (See also figure 1.) The rules written in PLTR use the relational operations
described above to explicitly express a knowledge. For example,

R(age > 65)[blood pressure] >?
mean R(age < 21)[blood pressure]

tells that the blood pressure of people older than 65 is in average significantly
higher than for people younger than 21. In the above rule we use a mapping
>?

mean to express the strong difference in the mean value between two “data
columns”. (See also figure 2.) The mapping >?

mean is simply a function, which
computes a truth value of the strong difference in mean from the given two typed
relations.

22 Michal Burda, Marian Mindek, Jana Šarmanová

Fig. 2. Comparison of the two disjunctive sub-tables.

3 The δ-cosymmetric rules

There exist a wide variety of the association rule types. The best-known are the
rules in the implicational form, which say that when the object satisfies some
condition (called antecedent), it (very probably) gratifies some other condition
(succedent), e.g.:

tequila ∧ salt⇒ lemon. (1)

This rule simply says that customers who buy tequila and salt often buy lemons,
too. However, there are many other rule types (e.g. associational, correlational
etc. – see [1], [2], [5], [7], [8], [9]). It is not our goal to mention each of them.
We preferable move the focus to the rules, which we later name δ-cosymmetric.
Consider the subsequent rule from [4]:

sex = “female” ⇒ wage: mean = $7.90/hr (overall mean wage = $9.02). (2)

It indicates that the women’s wage mean is significantly different to the rest of
examined objects. That is, the rule says that women earn in average less than
men. (The overall wage is in the rule for information only. To be statistically
consistent, we must compare two disjoint sets of values, e.g. female againts male
– see [4].) In general, the statistical test in the background of the rule compares
two sets of quantitative data – women’s wage against the wage of the remaining
data table (in fact, against men’s wage). We can apply the same mechanism and
mine similar rules, e.g.:

non-smoker ∧ wine-drinker ⇒ life-expectancy = 85 (overall = 80). (3)

Such rule says that people who drink wine and do not smoke live in average
longer than the other people. One can see, we compare the life expectancy of
people who don’t smoke and drink wine against the rest of the data table. Such
property is more visible when re-writing the original rules (2) and (3) (see also
[4]) into PLTR:

R(sex = “female”)[wage] <?
mean R(sex 6= “female”)[wage] (4)

and

R(non-smoker ∧ wine-drinker)[life-expectancy] >?
mean

R(¬(non-smoker ∧ wine-drinker))[life-expectancy]. (5)

Characteristics of cosymmetric association rules 23

Our research shows that many types of the associational rules can be trans-
formed to the fashion of comparing “something” against “something else” (later
in this paper, we mention some of them). Thus, it is natural to expect that such
rules will have some equal properties and that it will behave similarly in alike
situations. Therefore it is reasonable to identify the common features and use
them in general definition of a new class of association rules. Later in this paper
we try to do so and name the class of such association rules the δ-cosymmetric
rules.

Moreover, it is obvious to contemplate rules of type (4) or (5) as formulae
of PLTR. That is, one can treat the symbol <?

mean as a predicate, whose truth
value is the probability (quantity in interval [0, 1]). Such approach corresponds
to the fact that the statistical test gets never the absolute truth – there is always
a chance (non-zero probability) of a false result. In [6], we have developed a logic,
whose truth values are probability intervals i = 〈l, h〉 where 0 ≤ l ≤ h ≤ 1.

3.1 Domain

The following subsections try to highlight some properties that are common in
the class of association rules we want to name δ-cosymmetric. After that, we
provide the first prototype definition of what δ-cosymmetric rule is.

We start with the domain of the δ-cosymmetric predicate <?. We can see,
the rules of type (4) or (5) compare two typed relations. It is natural to expect
that when 〈A,B〉 is comparable then 〈B,A〉 is comparable too.

Let R is a set of all typed relations. We may expect that each δ-cosymmetric
predicate’s domain D equals to the carthesian product of some set of typed
relations:

∃K ⊆ R : D = K ×K.

This property tells us that for each typed relations A,B ∈ K, 〈A,A〉, 〈A,B〉 and
〈B,A〉 are comparable by the δ-cosymmetric predicate. That is, one can ask the
truth value of the formulae <? (A,A), <? (A,B), <? (B,A) for each A,B ∈ K.

3.2 Minimum difference

When mining the rules of type (4), it is useful to introduce an user-definable
minimum difference parameter δ. (See also [4].) Its purpose is as follows: Finding
conditions for which the means of some attribute are merely different does not
lead to interesting information. If we were to discover, for example, a group of
people with life expectancy five days more than the rest population, it may not
be of interest to us even if it passes a statistical test.

The same concept can be used when comparing variances, probability or any-
thing else. – The next thing common to each cosymmetric rule is the possibility
to employ the minimum difference δ to it.

In the following, we will write the rule of the minimum difference δ the
subsequent way:

R(C1)[A] >?
δ R(C2)[A] (6)

24 Michal Burda, Marian Mindek, Jana Šarmanová

or prefixually:
>?

δ

(
R(C1)[A], R(C2)[A]

)
. (7)

E.g. see the rule of the difference in wage of at least $5:

R(sex = “female”)[wage] <?
mean;$5 R(sex 6= “female”)[wage]. (8)

3.3 Non-symmetricity

In the following, we will need to define the negation of formula F . Suppose F is
formula of PLTR (e.g. (4)) whose truth value is i = 〈l, h〉. (It stands for the fact
that F is true with probability p ∈ [l, h].) We define a truth value of formula’s
F negation (denoted ¬F) as i′ = 〈1− h, 1− l〉.

The third common feature of rules similar to (4) is its non-symmetricity.
Suppose we are convinced of the validity of the rule >? (A,B). What can we say
about the truth value of the rule >? (B,A)? It is clear, if values of relation A
are significantly higher than values of relation B, the contrary statement can’t
be true as well (so the formula (10) holds).

More generally, the truth value of a statement “objects of relation B are
minimally over δ less than objects of relation A” equals to a negation of the
statement “objects of relation A are minimally over (−δ) less than objects of
the relation B”. Formally written:

<?
δ (B,A) ⇔ ¬

(
<?
−δ (A,B)

)
. (9)

When δ = 0 is omitted, it leads to

<? (B,A) ⇔ ¬
(
<? (A,B)

)
. (10)

3.4 Monotony

Let >?
δ1

(
A,B

)
= 〈l1, h1〉 and >?

δ2

(
A,B

)
= 〈l2, h2〉 where >? is a predicate

similar to the previously discussed. One can observe that the following holds all
the time: (

δ1 < δ2
)
⇒

(
(l1 ≥ l2) ∧ (h1 ≥ h2)

)
. (11)

Informally, this property says that the increase of the minimum difference δ leads
to the reduction of the rule’s probability.

3.5 Quasi-transitivity

We name probable the rule, which truth value i = 〈l, h〉 satisfies the condition
0, 5 < l. Let <?

δ (A,B) = 〈l1, h1〉, <?
δ (B,C) = 〈l2, h2〉 and <?

δ (A,C) = 〈l3, h3〉.
The last property of rules similar to (4) named quasi-transitivity tells the fol-
lowing: (

(0, 5 < l1) ∧ (0, 5 < l2)
)
⇒

(
0, 5 ≤ l3

)
. (12)

Informally, when some sub-table A is probably lower than B and B is probably
lower than C, it implies that A is probably not higher than C.

Please note, we can’t say that the probability of A <? C is higher or equals to
the maximum or minimum of the probabilities of A <? B and B <? C, because
such condition holds in fact very seldom.

Characteristics of cosymmetric association rules 25

3.6 The definition of δ-cosymmetric rules

Actually, we are still working on the precise definition of the δ-cosymmetric
relationship predicate. We try to unhide the important properties of the rules
similar to (4). The subsequent definition should be considered as the first pro-
totype of our effort. As our knowledge about the rules increases, we will modify
the definition to better pick up the reality.

Definition 1. Let R be the set of all typed relations, V the set of all truth
values, K ⊆ R and D = K × K. We name <? the cosymmetric predicate
schema if <? is a set of relationship predicates <?

δ : D → V (defined for each
δ ∈ R) and if the following holds:

1. For each typed relations A,B ∈ K and δ ∈ R holds:

<?
δ (A,B) = ¬

(
<?
−δ (B,A)

)
,

2. For each typed relations A,B ∈ K and δ1, δ2 ∈ R and i1 = 〈l1, h1〉, i2 =
〈l2, h2〉 such that <?

δ1
(A,B) = i1, <?

δ2
(A,B) = i2 holds:(

δ1 < δ2
)
⇒ (l1 ≥ l2) ∧ (h1 ≥ h2),

3. For each typed relations A,B,C ∈ K and δ ∈ R and i1 = 〈l1, h1〉, i2 =
〈l2, h2〉, i3 = 〈l3, h3〉, such that <?

δ (A,B) = i1, <?
δ (B,C) = i2, <?

δ (A,C) =
i3, holds: (

(0, 5 < l1) ∧ (0, 5 < l2)
)
⇒

(
0, 5 ≤ l3

)
.

The elements <?
δ of the set <? are called δ-cosymmetric relationship predicates.

The set D is also called the domain of the cosymmetric predicate schema.

4 Concrete δ-cosymmetric predicates

In the above section we have discussed several properties of a so-called cosym-
metric rules. In this section, we provide an exemplary definitions of such rule
type.

4.1 Cosymmetric rules of significant difference in position

The idea for cosymmetric rules of significant difference in position is subsequent.
One may have data which are quantitative and may ask, for which subsets of
data the focused quantitative attribute is rather higher or lower in contrast
to the rest (c.f. rule (4) or (5)). In the other words, one may enquire for all
hypotheses about the differences in position that are supported within data.
We can determine the difference and measure the significancy with appropriate
statistical test of hypotheses.

For such purpose we use the Aspin–Welch statistical test (see [3]), which is
two-sample test on means. The test is similar to the common Student’s t test. It

26 Michal Burda, Marian Mindek, Jana Šarmanová

assumes the two random samples X and Y to be normally distributed (there is
no need of equal variances) and it tests the zero hypothesis H0 : EX − EY = δ
against the two-sided alternative hypothesisHA : EX−EY 6= δ. The test statistic
is

T =
X̄ − Ȳ − δ

S
, where S =

√
S2

X

m
+
S2

Y

n
;

f =
S4

S4
X

m2(m−1) + S4
Y

n2(n−1)

 .

The hypothesis H0 is rejected if |T | ≥ tf (1 − α
2), where tf is a distribution

function of Student’s distribution with f degrees of freedom.
Pursuant to the one-sided Aspin–Welch statistics, we can define the relation-

ship predicate <?
AW ;δ as follows.

Definition 2. Predicate <?
AW ;δ is a function where an interval of probability

i = 〈p, p〉 is mapped the following way to each pair of typed relations 〈X,Y 〉,
which both are non-empty and both contain just one column.

<?
AW ;δ (X,Y) = 〈p, p〉

for such p where T = tf (p) for T , f and tf as above.

The usage example comes after. Suppose we have a data table D about pa-
tients suffering certain disease. Let such table contains categorial column sex
and quantitative column pressure. One may be interested whether D(sex =
“male”)[pressure] gives higher values than D(sex = “female”)[pressure]. That
is, one enquires the validity of the following rule:

D(sex = “male”)[pressure] >AW ;0 D(sex = “female”)[pressure].

Now we can take a closer look at the Aspin–Welch predicate <?
AW ;δ to see,

whether it has all the properties enumerated in section 3.6.

Theorem 1. The set of all Aspin–Welch relationship predicates <?
AW ;δ (∀δ) is

cosymmetric predicate schema.

Proof. (a) Non-symmetricity. We should check the equivalence (9). Suppose
typed relations X, Y and value δ. Let >?

AW ;δ (X,Y) = 〈p1, p1〉 and >?
AW ;−δ

(Y,X) = 〈p2, p2〉. We are going to show that p1 = 1− p2. Computing the values
of p1 and p2 means accordingly to the definition 2 computing the T characteris-
tics. Thus,

T1 =
X̄ − Ȳ − δ

S
= tf (p1) and T2 =

Ȳ − X̄ − (−δ)
S

= tf (p2).

We see that T1 = −T2, so tf (p1) = −tf (p2). It is commonly known that tf (p) =
−tf (1− p), so p1 = 1− p2.

(b) Monotony. It is commonly known that tf (p) is monotone, so when we
increase δ, the value of characteristics T gets lower and so does the value of the
resultant probability p.

(c) Quasi-transitivity. the validity of quasi-transitivity condition is evident
from the fact that ∀f ∈ N : tf (0, 5) = 0.

Characteristics of cosymmetric association rules 27

4.2 Funded cosymmetric rules

We can go on and define various other δ-cosymmetric predicates similar to the
definition of Aspin–Welch predicate. We don’t have enough space for such defi-
nitions, so let us leastwise mention some possibilities.

We can define many other predicates for determining the significant difference
in position. Such definitions could be based on various existing statistical tests
– it is possible e.g. to employ the rank tests to achieve robust cosymmetric
predicates etc. Similarly to the significant difference in position, we can define
predicates deciding of the difference in variance (dispersion). For example, we
can mine rules telling us whether the presence of some attribute puts there
significant increase of dispersion of some other attribute etc.

We can employ the two-sample tests on binomial distribution to generate
rules about discrete attributes. Generally said, almost every two-sample statisti-
cal test may be considered to be used in a definition of appropriate cosymmetric
predicate.

Let’s have a look on the implicational rules of type (1). We show that we
can define δ-cosymmetric rules that are analogous to them. Before doing so, we
should describe shortly the meaning of the implicational rules.

The GUHA method ([8], [7]) works with the so-called generalized quantifiers.
These quantifiers form the base for the association rule creation. The rules are of
the form ϕ ∼ ψ, where ϕ and ψ are formulae and ∼ the generalized quantifier.
The truth of the rule is determined from a 4-field table (see table 1), which
summarizes the amount of objects satisfying ceratin configurations.

Table 1. 4-field table of ϕ and ψ

ψ ¬ψ
ϕ a b

¬ϕ c d

The a value denotes the number of objects satisfying both ϕ and ψ, b is the
number of objects satisfying ϕ and not ψ etc.

The quantifier ⇒p,base called also the funded implication is defined for 0 <
p ≤ 1 and base ≥ 0 as follows. The rule ϕ⇒p,base ψ is true if and only if (iff)

a

a+ b
≥ p ∧ a ≥ Base.

More on such rules can be read from [8], [7] or [10]. The example of the rule
based on the funded implication is (1).

Now, we provide a definition of a predicate that is similar to the quantifier
of funded implication. After that, we show that it is δ-cosymmetric.

28 Michal Burda, Marian Mindek, Jana Šarmanová

Definition 3. Let A and B be the typed relations, each containing exactly one
column with values from the set {0, 1} and let δ ∈ [−1, 1]. Let us denote sum(A)
the number of A’s rows possessing “1”. We define the Funded relationship pred-
icate <?

fnd;δ as follows:

>?
fnd;δ (A,B) = 〈1, 1〉 iff

sum(A)
sum(A) + sum(B)

>
1 + δ

2
,

>?
fnd;δ (A,B) = 〈0, 5, 0, 5〉 iff

sum(A)
sum(A) + sum(B)

=
1 + δ

2
,

>?
fnd;δ (A,B) = 〈0, 0〉 iff

sum(A)
sum(A) + sum(B)

<
1 + δ

2
.

Theorem 2. The set of all funded relationship predicates <?
fnd;δ (∀δ) is cosym-

metric predicate schema.

Proof. (a) Non-symmetricity. We must prove that a
a+b >

1+δ
2 iff b

a+b <
1−δ
2 .

a
a+b >

1+δ
2 ⇔ 2a

a+b − 1 > δ ⇔ 2a+2b−2b
a+b − 1 > δ ⇔

⇔ 1− 2b
a+b > δ ⇔ b

a+b <
1−δ
2 .

(b) Monotony and (c) Quasi-transitivity are obvious.

If we omit the minimum support constraint in the definition of the funded
implication, we get the same rules as with the funded δ-cosymmetric predicate.
In the other words, the rule

ϕ⇒p,0 ψ

is true on data table R iff the following rule has truth value equal to 〈1, 1〉:

R(ψ)[ϕ] >?
fnd;(2p−1) R(¬ψ)[ϕ].

As a result we can say that implicational GUHA rules are just special cases
of δ-cosymmetric rules. This surprising result convinced us of the importance of
the δ-cosymmetric rules research.

5 Schemes of δ-cosymmetric association rules

Consider the general pattern of a δ-cosymmetric rule:

R(C1)[A] >? R(C2)[A]. (13)

When mining such rules, we can generate and test virtually every combination
of C1, C2, A, but doing so makes not much sense. It is because the association
rule mining process results often in a wide range of association rules and it is
sometimes hard to be acquainted with it. Moreover, only several combinations
of conditions C1 and C2 are easy to interpret. Consider the following rule –
although it may be true, the analyst has probably no usage for it.

R(eyes = “blue” ∧ sex = “male”)[fat] >? R(age > 30 ∧ wage < $200)[fat] (14)

In the following, we try to recognize the patterns of δ-cosymmetric rules of
better interest than general pattern (13).

Characteristics of cosymmetric association rules 29

5.1 Scheme “one-against-the-rest”

The easiest pattern of interesting δ-cosymmetric rules is

R(C)[A] >? R(¬C)[A]. (15)

We take one condition C and compare values of some quantitative attribute A
for two sub-tables where the first satisfies the given condition C and the second
doesn’t. Such rules express the condition at which the values of attribute A are
“somehow” significantly higher (or lower) than the rest of the data table. This
basic pattern we name one-against-the-rest.

A pattern similar to (15) is conditional one-against-the-rest :

R(C1 ∧ C2)[A] >? R(¬C1 ∧ C2)[A]. (16)

This pattern stands for “when considering only values fulfilling the condition
C2, the additional condition C1 indicates the significant increase of value A (in
the sense of >?).” That is, we fisrt restrict ourselves on data rows satisfying C2

only and then we search simply the one-against-the-rest rules on them.

5.2 Scheme “one-on-one”

The pattern one-on-one is a little more tricky. It is good in situations, when we
want to compare groups created accordingly to one categorial attribute. Suppose
attribute B be categorial with domain {b1, b2, . . . , bn}. Let moreover attribute
A be quantitative. The pattern one-on-one is as follows:

R(B = bi)[A] >? R(B = bj)[A] (for i 6= j). (17)

The rule of such type means: “The objects with value bi in attribute B involve
significantly higher values of attribute A than objects with value bj in attribute
B.” Generally, we can generate and test

(
n
2

)
different hypotheses for a categorial

attribute with n various values.
We can add an additional condition C to form conditional one-on-one pat-

tern, too:

R(B = bi ∧ C)[A] >? R(B = bj ∧ C)[A] (for i 6= j). (18)

6 Some notes of how to reduce the number of resultant
rules

The large size of the association rule mining results is the common problem.
Analyst hardly orientates himself or herself in a big list of mined rules. Therefore,
we enumerate here some hints of how to prune the result from less-interesting
rules and so to restrict the resultant δ-cosymmetric formulae to the reasonable
amount.

30 Michal Burda, Marian Mindek, Jana Šarmanová

1. The significance level – the basic restriction on eventual rules is stating the
minimum probability of its validity – in the other words, one may set a
number pmin and throw away every rule, which truth value is below that
threshold. Significance level can be pre-set to any of the usual values as 0,95
or 0,99.

2. Contradictory conditions – the conditions appearing in the rule should be
contradictory. That is, when considering the rule

R(C1)[A] >? R(C2)[A]

then the formula C1 ∧C2 should be contradiction. Rules satisfying that cri-
terion are more easily interpretable and we avoid the uncorrect statistical
comparing of non-disjunctive samples. (Compare with rule (14). Note also
that the rules based on one-against-the-rest or one-on-one are all of contra-
dictory conditions.)

3. Minimum support – minimum support is the best-known instrument for
pruning away the non-interesting conditions from which the association rules
are going to be formed. The minimum support criterion simply says that
there must exist minimally minsup objects satisfying condition that appears
in the rule. If not, such condition isn’t used in the association rule generating
process. The definition of the minsup value greatly improves the efficience
of association rule mining algorithms (see [1], [9], [11] for more information).
Minimum support should be set by expert only.

4. Minimum difference – setting the minimum difference δ is analogous to the
stating of minimum rule probability. Doing so we express that we are inter-
ested in the rules, which confirm the dissimilarity to be at least of size δ.
Minimum difference should be set by expert only.

5. Easy-to-interpret rules only – in section 5 we have shown that generating
all possible rules makes no sense. One may to generate only the rules, which
are easy to interpret. That is, we should generate rules conforming to the
patterns discussed in section 5. A similar criterion on that topic is to use
conditions in conjunctive form only.

7 Conclusion and future work

In this paper, we have introduced the new class of association rules – the δ-
cosymmetric rules. We are the first who has shown, how to use the Probability
logic of typed relations (PLTR, see [6]) to express rules of such type. This paper
also shows the benefit of using PLTR as a language for writing the association
rules in, too.

We have identified the basic properties of δ-cosymmetric rules and provided
the definition of rules of significant difference in position, as an example. The
second part of this paper was dedidacted to some notes on how to generate the
δ-cosymmetric rules to obtain the interesting rules only.

This paper also presents two basic examples of concrete δ-cosymmetric rules:
the Aspin–Welch predicate and the Funded predicate. The second is surprise for

Characteristics of cosymmetric association rules 31

us, since it shows that GUHA’s implicational rules are just the special cases of
more general δ-cosymmetric rules.

Our future work will address the deeper research of δ-cosymmetric rules. We
will try to unhide more interesting features of that rule class. For example, our
actual research shows that the cosymmetric rules can be used in the definition of
a function that is metric. An interesting task will be undisputably the clustering
using such metrics, etc.

We are also focused on finding the fast and efficient algorithm to mine the
δ-cosymmetric rules. A lot of work was done in [4] by Aumann and Lindell.
(However, they didn’t know that they are mining cosymmetric rules – their
algorithm should be slightly modified to comply the wide range of possible rule
types.)

We are also interested in the methods of visualisation of δ-cosymmetric rules.
The properties of δ-cosymmetric rules make rational to use the slightly modified
Hasse’s diagrams to visualize the rules mined according to the pattern “one-
on-one” discussed above. We also work on employing the conceptual lattices to
represent mined δ-cosymmetric rules.

References

1. Agrawal, R. Fast discovery of association rules. In Advances in knowledge dis-
covery and data mining (1996), AAAI Press / MIT Press, pp. 307–328.

2. Agrawal, R., Imielinski, T., and Swami, A. Mining associations between sets
of items in massive databases. In ACM SIGMOD 1993 Int. Conference on Man-
agement of Data (Washington D.C., 1993), pp. 207–216.

3. Anděl, J. Statistické metody. MATFYZPRESS, Praha, 1998.
4. Aumann, Y., and Lindell, Y. A statistical theory for quantitative association

rules. In Knowledge Discovery and Data Mining (1999), pp. 261–270.
5. Berka, P. Dobýváńı znalost́ı z databáźı. Academia, Praha, 2003.
6. Burda, M., Hynar, M., and Šarmanová, J. Pravděpodobnostńı logika typo-

vaných relaćı. In Znalosti, poster proceedings (2005).
7. Hájek, P., and Havránek, T. Mechanizing Hypothesis Formation. Springer–

Verlag, Berlin, 1978. Internet: http://www.cs.cas.cz/~hajek/guhabook/ (May
2004).

8. Hájek, P., Havránek, T., and Chytil, M. K. Metoda GUHA – automatická
tvorba hypotéz. Academia, Praha, 1983.

9. Han, J., and Kamber, M. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, USA, 2000.

10. Rauch, J. Asociačńı pravidla a matematická logika. In Znalosti (Brno, 2004),
pp. 114–125.

11. Rauch, J., and Šimůnek, M. Alternative approach to mining association rules.
In FDM (Japan, 2002), pp. 157–162.

Text Compression: Syllables

Jan Lánský and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
zizelevak@gmail.com, michal.zemlicka@mff.cuni.cz

Text Compression: Syllables

Jan Lánský and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
zizelevak@gmail.com, michal.zemlicka@mff.cuni.cz

Abstract. There are two basic types of text compression by symbols –
in the first case symbols are represented by characters, in the second case
by whole words. The first case is useful for very short files, the second case
for very long files or large collections. We supposed that there exist yet
another way where symbols are represented by units shorter than words
– syllables. This paper is focused to specification of syllables, methods for
decomposition of words into syllables, and using syllable-based compres-
sion in combination of principles of LZW and Huffman coding. Above
mentioned syllable-based methods are compared with their counterpart
variants for characters and whole words.

1 Introduction

Knowledge on structure of coded messages can be very useful for design of a
successfull compression method. When compressing text documents, the struc-
ture of messages is dependent on used language. We can expect that documents
written in the same language will have similar structure.

Similarity of languages can be seen according many aspects. Language clas-
sification can be made, for example, according their use of fixed or free word
order or whether they have simple or rich morphology.

To the languages with rich morphology they belong for example Czech and
German. In these languages is syllable a natural element logically somewhere
between characters and words. Each word is often created by two or more sylla-
bles.

At the beginning we supposed that:

– Syllable-based compression will be suitable for middle-sized files, character-
based compression will be more suitable for small files, and word-based com-
pression will suit best for very large files.

– Syllable-based compression will be more suitable for languages with rich
morphology.

– The number of unique syllables in given language is much lower than the
number of unique words. This lead to lower memory requirements of syllable-
based compression algorithms than of word-based ones.

– The sets of syllables of two documents written in the same language are
usually more similar than sets of words of these documents.

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 32–45, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

Text Compression: Syllables 33

2 Languages and Syllables

We can classify languages according their morphology. There are languages like
English having simple morphology where from one stem there can be derived
only a few word forms. There are also languages with rich morphology (like
Czech) where from one stem it can be derived several hundred word forms.

We will demonstrate it on some examples from Czech and English. The verb
take has in English only next 5 forms: take, takes, taking, took, taken. Czech verb
vźıt, which corresponds to the English verb take, has next 24 forms: vźıt, vźıti,
vezmu, vezmeš, vezme, vezmeme, vezmete, vezmou, vzal, vzala, vzalo, vzali, vzaly,
vezmi, vezměme, vezměte, vzat, vzata, vzato, vzati, vzaty, vzav, vzavši, vzavše.
Next difference is in creation of words with similar meaning and negations. In
English there are used combinations of more words for getting different mean-
ing, for example get on, get off. The negation in English is created by combi-
nation with word not, for example not get on. In Czech prefixes and suffixes
are used instead. To English get on, get off, not get on correspond Czech nas-
toupit, vystoupit, nenastoupit. In Czech we can create from verb skočit (jump
in English) using prefixes 9 next similar verbs: přeskočit, nadskočit, podskočit,
odskočit, rozskočit, naskočit, vskočit, uskočit, vyskočit. For each of these verbs we
can create their antonyms by using prefix ne: neskočit, nepřeskočit, nenadskočit,
nepodskočit, neodskočit, nerozskočit, nenaskočit, nevskočit, neuskočit, nevyskočit.
For each of these 20 verbs there exist 24 grammatical forms. So from this one
word skočit we can derive over 400 similar words, but these words are composed
from only a few tens of syllables.

2.1 Syllables

According Compact Oxford English Dictionary [10] syllable is defined as: ‘A unit
of pronunciation having one vowel sound, with or without surrounding conso-
nants, and forming all or part of a word.’

As the decomposition to syllables is used in data compression, it is not nec-
essary to decompose words into syllables always correctly. It is sufficient if the
decomposition produces groups of letters that occur quite frequently. We there-
fore use simplified definition below that is not equivalent with the grammatically
correct definition. ‘Syllable is a sequence of sounds, which contains exactly one
maximal subsequence of vowels.’ This definition implies that the number of syl-
lables in a word is equal to the number of maximal sequences of vowels in the
same word. For example, the word famous contains two maximal sequences of
vowels: a and ou, so this word is created from two syllables: fa and mous. Word
pour contains only one maximal sequence of vowels ou, so whole this word is
created by only one syllable.

Decomposition words into syllables is used for example for text formatting
when we want to split word exceeding end of line. Disadvantage of this way is
that we cannot decompose all words and some words must be left unsplitted.

One of the reasons why we selected syllables is that documents contain less
unique syllables than unique words. Example Czech document (Karel Čapek:

34 Jan Lánský, Michal Žemlička

Hordubal) with the size of 195 kB has 33,135 words form which are 8,071 distinct
and 61,259 syllables from which are 3,187 distinct. English translation of bible
[9] with the size of 4MB has 767,857 words from which are 13,455 distinct and
1,073,882 syllables from which are 5,604 distinct.

2.2 Problems in Decomposition of Words into Syllables.

Decomposition of words into syllables is not always unique. To determine it,
we must often know origin of the word. Some problems will be demonstrated
on selected Czech words. We supposed that for compression it is sufficient to
use some approximation of correct decomposition of words into syllables. We
supposed that this approximation would have only a small negative effect on
reached degree of compression.

An example of non-uniqueness of decomposition of words into syllables is
the word Ostrava which can be correctly decomposed into Os-tra-va and also
into Ost-ra-va. Generally sequence of letters st is often a source of ambiguity of
decomposition of Czech words to syllables.

An example of a variant decomposition of similar sequences of letters, which
is caused by origin of words, is words oblet́ı and obreč́ı, that have first two letters
same. Word oblet́ı (will fly around) was created by adding prefix ob to the word
let́ı (flies). Word obreč́ı (will cry over) was created by adding prefix o to the
word breč́ı (cries). So the word oblet́ı is decomposed into ob-le-t́ı, word obreč́ı is
decomposed into o-bre-č́ı. A big group of problems is brought by words of foreign
origin and their adapted forms.

Sometimes it can by difficult to recognize real number of syllables of given
word. Although the word neuron is a prefix of the word neuronit, these words
have different decomposition to syllables. Word neuron is decomposed to neu-
ron, word neuronit is decomposed to ne-u-ro-nit. In the first case the sequence of
letters neu is composed by one syllable, in the second case it is composed from
two syllables.

Full correctness of decomposition of words into syllables can be reached only
at the price of very high effort. For the use in compression it is not impor-
tant whether the decomposition is absolutely correct, but whether the produced
groups of letters are frequent enough.

Other goal is to formalize terms letter, vowel, consonant, word, syllable, and
language. When we try to define expressions vowel and consonant, we must
interesting about position letter in the word. For example in Czech letters r and
l can be according their context both vowels and consonants. In English similar
role is played by the letter y.

2.3 Definition of Syllable.

Definition 1. Let Σ be finite nonempty set of symbols (alphabet). Symbol λ 6∈ Σ
is called empty word. Let ΣP ⊆ Σ be set of letters, then ΣN = Σ\ΣP is called
set of nonletters. Let ΣC ⊆ ΣN be set of digits, then ΣZ = ΣN\ΣC is called set
of special characters.

Text Compression: Syllables 35

Definition 2. Let Σ be finite nonempty set of symbols. Let ΣP ⊆ Σ be set of
letters. Let ΣM ⊂ ΣP be set of small letters, then ΣV = ΣP\ΣM is called set of
capital letters. If there exists bijection ψ : ΣM → ΣV, then ΣP is called correct
set of letters.

Note 1. The set of letters for most of natural languages is correct, but exists
exceptions like German. In German letter ß can be according context or small
or capital letter. If we want to work with non-correct sets of letters, we must
modify definition 2.

Definition 3. Let Σ be finite nonempty set of symbols. Let ΣP ⊆ Σ be set of
letters.

Let φ : (Σ ∪ {λ})×ΣP × (Σ ∪ {λ}) → {0, 1, 2, 3} be a function. Let β ∈ ΣP,
let α, γ ∈ (ΣP ∪ {λ}). Then:

– If φ(α, β, γ) = 0 then β in context α, γ is called vowel. (β ∈ ΣA).
– If φ(α, β, γ) = 1 then β in context α, γ is called consonant. (β ∈ ΣB)
– If φ(α, β, γ) = 2 then β in context α, γ is consisting from vowel β1 followed

by consonant β2. As β1 and β2 are together one letter, they cannot be split
into different syllables.

– If φ(α, β, γ) = 3 then β in context α, γ is consisting from consonant β1

followed by vowel β2. As β1 and β2 are together one letter, they cannot be
split into different syllables.

Note 2. It is probable that there exist languages where we do not need to know
context α, γ to decide if letter β is a vowel or a consonant. In both Czech and
English the use of context is necessary.

In Czech can letters r and l be according their context used as vowels or as
consonants. If α or γ are vowels, then β = r (respectively β = l) is a consonant,
in the opposite case it is a vowel. Examples: mlčet, mluvit, vrtat, vrátit.

In English the letter y in context of two vowels has the role of a consonant
(example: buying).

In English words of type trying φ(r, y, i) has value 2, so y is composed from
vowel y1 followed by consonant y2.

We supposed that there exist a language where φ(α, β, γ) can have value 3,
but in English and Czech it is not so.

The size of context one from left and right side is sufficient for Czech and
for most of English words. We suppose that this size of context can be sufficient
too.

Definition 4. Let Σ be a finite nonempty set of symbols. Let ΣP ⊂ Σ be a set
of letters. Let ΣC ⊂ ΣN be a set of digits. Let ΣC ∩ΣP = ∅. Let α = α1, . . . , αn,
αi ∈ Σ. If one of the following cases is valid, then α is called a word over
alphabet Σ.

If αi ∈ ΣZ for i = 1, . . . , n, word α is called other.
If αi ∈ ΣC for i = 1, . . . , n, word α is called numeric.
If αi ∈ ΣM for i = 1, . . . , n, word α is called small.

36 Jan Lánský, Michal Žemlička

If αi ∈ ΣV for i = 1, . . . , n, Word α is called capital.
If α1 ∈ ΣV & αi ∈ ΣM for i = 2, . . . , n, word α is called mixed.

Note 3. Numeric words and other-words are called together as words from non-
letters. Small, capital, and mixed words are called as words from letters.

Definition 5. Let Σ be finite nonempty set of symbols. Let α = α1, . . . , αn, αi ∈
Σ. Let β1, ..., βm are words over alphabet Σ. Let βi · βi+1 are not words over
alphabet Σ for i = 1, . . . ,m − 1. Let α = β1 · ... · βm. Then β1, ..., βm is called
decomposition of the string α into words.

Note 4. From definitions 4 and 5 follows that decomposition of strings into words
is fast unique. There is an exception when after two ore more capital letters
follows at least one small letter (example CDs), but this case is very rare in
natural languages.

There exist two types of algorithms of decomposition of strings into words.
Both types differ only in solving that exception. Algorithms of type A1 create
from this string capital-word and mixed-word (example C and Ds). Algorithms
of type A2 create from this string capital-word and small-word (example CD
and s).

Words are decomposed into syllables (see Def. 9).

Definition 6. Language L is an ordered 6-tuple (Σ,ΣP , ΣC , ΣM , φ, A), where

– Σ is a finite nonempty set of symbols.
– ΣP ⊂ Σ is a correct set of letters.
– ΣC ⊂ ΣN is a set of digits, where ΣN = Σ\ΣP .
– ΣM ⊂ ΣP is a set of small letters.
– φ : (Σ ∪ {λ}) × Σ × (Σ ∪ {λ}) → {1, ..., 4} is a function which according

definition 3 specify whether letter β in context α, γ ∈ (Σ ∪ {λ}) is a vowel
or a consonant.

– A is an algorithm which for each string α = α1, . . . , αn, αi ∈ Σ finds some
decomposition of given string into words.

Definition 7. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let α, γ ∈ Σ∗
B,

β ∈ Σ∗
A, |β| ∈ {1, 2, 3}. If α · β · γ is a word over alphabet σ, then it is syllable

of the language L.

Note 5. Notation α ∈ Σ∗
B (respective β ∈ Σ∗

A) mean that β is a sequence of
consonants (respective vowels).

From definitions 4 and 7 follows that each syllable is also a word. So we will
recognize five types of syllables: other syllables, numeric syllables, small syllables,
capital syllables, and mixed syllables.

Condition that each syllable must be also word is necessary. For example,
the string xxAxx is not word, therefore it cannot be (according Def. 7) syllable.

Definition 8. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let α = α1, . . . , αn,
αi ∈ ΣP is a word over alphabet Σ.

Text Compression: Syllables 37

If (∃k)αk ∈ ΣA, then α is called word decomposable into syllables.
If (∀k)αk ∈ ΣA then α is called non-syllable word.

Definition 9. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let α = α1, . . . , αn,
αi ∈ ΣP is a word decomposable into syllables. Let β1, ..., βm be syllables of the
language L. Let α = β1 · ... · βm, then β1 · ... · βm is called decomposing word α
into syllable.

Definition 10. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let P be an al-
gorithm which input is document D decomposed into words by algorithm A into
words α1, ..., αn over alphabet Σ. If for all αi they are valid both the follow-
ing conditions, then P is called algorithm of decomposition into syllables for
language L.

– If αi is a word decomposable into syllables, then output of the algorithm is a
decomposition of the word αi into syllables.

– If αi is a non-syllable word, numeric-word, or other-word, then output of the
algorithm is a word αI .

Definition 11. Let P be an algorithm of decomposition into syllables for lan-
guage L1. If B is an algorithm of decomposition into syllables for all other lan-
guages L, then we say that P is a universal algorithm of decomposition into
syllables. If there exist a language L2 for which P is not algorithm of decompo-
sition into syllables, then we say that P is specific algorithm of decomposition
into syllables.

Note 6. Each universal algorithm of decomposition into syllables P has to use
all information from definition of language L. In the other case we can construct
language for which P will not be an algorithm of decomposition into syllables.

2.4 Examples of languages

There are two examples of languages: English and Czech. Czech languages has
in comparison with English new diacritical letter.

English language can be characterized as LEN = (Σ,ΣP , ΣC , ΣM , φ, A) where:

– Σ = ANSI character set
– ΣP = {a, . . . , z, A, . . . , Z}
– ΣC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
– ΣM = {a, . . . , z}
– φ is defined as:

• (∀α ∈ (Σ ∪ {λ}),∀β ∈ (M\{y, Y }),∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 0
• (∀α ∈ (Σ ∪ {λ}),∀β ∈ (ΣP \M),∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 1
• (∀α ∈ ((Σ\M) ∪ {λ}),∀β ∈ {y, Y },∀γ ∈ ((Σ\M) ∪ {λ})) φ(α, β, γ) = 0
• (∀α ∈ (ΣP \M),∀β ∈ {y, Y },∀γ ∈M) φ(α, β, γ) = 2
• (∀α ∈M,∀β ∈ {y, Y },∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 1
• (∀β ∈ {y, Y },∀γ ∈M)φ(α, β, γ) = 1
• where M = {a, e, i, o, u, y, A,E, I,O, U, Y }

38 Jan Lánský, Michal Žemlička

– A = A1 from Note 4.

Czech language can be characterized as LCZ = (Σ,ΣP , ΣC , ΣM , φ, A) where:

– Σ = ANSI character set
– ΣP = {a,. . . ,z,A,. . . ,Z,á,č,ď,é,ě,́ı,ň,ó,̌r,̌s,̌t,ú,̊u,ý,ž,Á,Č,Ď,É,Ě,́I,Ň,Ó,Ř,Š,Ť,Ú,

Ů,Ý,Ž}
– ΣC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
– ΣM = {a,. . . ,z,á,č,ď,é,ě,́ı,ň,ó,̌r,̌s,̌t,ú,̊u,ý,ž}
– φ is defined as:

• (∀α ∈ (Σ ∪ {λ}),∀β ∈M,∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 0
• (∀α ∈ (Σ M),∀β ∈ {r, l, R, L},∀γ ∈ ((Σ ∪ {λ})\M)) φ(α, β, γ) = 0
• else φ(α, β, γ) = 1
• where M = {a,á,e,é,ě,i,́ı,o,ó,u,ú,̊u,y,ý,A,Á,E,É,Ě,I,́I,O,Ó,U,Ú,Ů,Y,Ý}

– A = A1 from Note 4.

2.5 Algorithms of Decomposition Into Syllables

We describe four universal algorithms of decomposition into syllables: universal
left PUL, universal right PUR, universal middle-left PUML, universal middle-
right PUMR. These four algorithms are called as algorithms of class PU. The
names of these algorithms are derived from way these algorithms work. Inputs
of these algorithms are language L = (Σ,ΣP , ΣC , ΣM , φ, A) and document D =
α1, . . . , αn, αi ∈ Σ. These algorithms are composed from two parts. The first
part is an initialization and this is common for all algorithms of the class PU.
The second part is different for each algorithm.

At the beginning of the initialize part we decompose document D into words
by algorithm A. Algorithm of class PU is processing single words. Words from
non-letters are automatic declared as syllables. For each word from letters is
according function φ decided whose its letters are consonants and which are
vowels. Maximal blocks (blocks that cannot be extended) of vowels are found
afterwards. Blocks of vowels longer than three are not usually in natural lan-
guages, so maximal length of block of vowels is set to three. These blocks of
vowels will create bases of syllables. For each block of vowels we must keep in
memory its begin and end. Consonants, which are in the word before first block
of vowels, are added to this block. Consonants, which are in the word after last
block of vowels, are added to this block.

Single algorithms of class PU are different in the way of adding consonants,
which are between two blocks of vowels. After these ways of adding are algorithms
named.

Algorithm universal left PUL adds all consonants between blocks of vowels
to the left block.

Algorithm universal right PUR adds all consonants between blocks of vowels
to the right block.

Algorithm universal right PUMR in the case of 2n (even count) consonants
between blocks adds to both blocks n consonants. In the case of 2n + 1 (odd

Text Compression: Syllables 39

count) consonants between blocks it adds to the left block n consonants and to
the right block n+ 1 consonants.

Algorithm universal right PUML in case of 2n (even count) consonants be-
tween blocks adds to both blocks n consonants. In the case of 2n+1 (odd count)
consonants between blocks it adds to the left block n+ 1 consonants and to the
right block n consonants. The only exception from this rule is the case when
between blocks it is only one consonant, this consonants is added to the left
block.

Example: We will decompose word priesthood into syllables. We are using
language LEN. Blocks of vowels are (in order): ie, oo.

correct decomposition into syllables: priest-hood
universal left PUL: priesth-ood
universal right PUR: prie-sthood
universal middle-left PUML: priest-hood (correct form)
universal middle-right PUMR: pries-thood

3 Compression methods

We used hypothesis that compressed text is structured into sentences and it
is described by following rules. A sentence begins with mixed word and ends
with other word, which contains a dot. Inside the sentences are switching reg-
ularly small words and other words. If the sentence begins with capital-word,
then inside are switching regularly capital-words and other-word. Numeric-words
appear rarely and are usually followed by other-words.

When we decompose words into syllables, we have problem with this model.
Each word has different count of syllables. Small-word is usually followed by
other-word, whereas small-syllable can be followed not only by other-syllables
but also by another small-syllable.

To improve a compression of alphabet of syllables (or words) we have created
for each language a database of frequent words. More details will be in section 4.
Words from this database are used for initialization of compressing algorithms.
When coding alphabet of given document we can code only words, which are
not from out databases of frequent words. This is useful for smaller documents,
on the bigger documents is that effect lower.

3.1 LZWL

Algorithm LZW [6] is a dictionary compression character-based method. Syllable-
based version of this method has been named LZWL. Algorithm LZWL can work
with syllables obtained by all algorithms of decomposition into syllables. This
algorithm can be used for words (see Def. 4) too.

First we shortly recall classical method LZW [6]. Algorithm is using dictio-
nary of phrases, which is represented by data structure trie. Phrases are num-
bered by integers afterwards order of adding.

40 Jan Lánský, Michal Žemlička

In initialization step the dictionary is filled up with all characters from al-
phabet. In each next step it is searched for maximal string S, which is from
dictionary and matches the prefix of still non-coded part of the input. Number
of phrase S is sent to the output. A new phrase is added to the dictionary. This
phrase is created by concatenation of string S and character that follows after
S in file. Actual input position is moved forward by the length of S.

Decoding has only one situation for solving. We can receive number of phrase,
which is not from dictionary. In this case we can create that phrase by concate-
nation of the last added phrase with its first character.

Syllable-base version is working over alphabet of syllables. In initialization
step we add to the dictionary empty syllable and small syllables from database
of frequent syllables. Finding string S and coding its number is analogical with
character-based version, only that string S is a string of syllables. Number of
phase S is encoded to output. It is possible that string S can be empty syllable.
If S is empty syllable, then we must get from file one syllable called K and
encode K by methods for coding new syllables, see section 4.2. Syllable K is
added to dictionary. Actual position in the file is moved forward by the length
of S, in the case when S is empty syllable, the input position is moved forward
by the length of K.

In adding a phrase to dictionary there is a difference to character-based
version. Phrase from the next step will be called S1. If S and S1 are both
non-empty syllables, then we add new phrase to the dictionary. New phrase is
created by concatenation S1 with the first syllable of S. This solution has two
advantages. The first advantage is that strings are not created from syllables
that appear only once. Second advantage is that we cannot receive in decoder
number of phrase that is not from dictionary.

3.2 HuffSyllable

HuffSyllalbe is statistical compression method based on adaptive Huffman coding
and using structure of sentence in natural language. The idea of this algorithm
was inspired by HuffWord [7]. Algorithm LZWL can work with syllables ob-
tained by all algorithms of decomposition into syllables mentioned above. This
algorithm can be used for words too.

For each type of syllables (small, capital, mixed, number, other) it is build
adaptive Huffman tree [2], which is coding syllables of given type. In the initial-
ization step of algorithm we add to Huffman tree for small syllables all syllables
and their frequencies from database of frequent syllables.

In each step of the algorithm it is calculated expected type of actually pro-
cessed syllable K. If syllable K has different type than it is expected, then an
escape sequence is generated. Syllable K is encoded by Huffman tree correspond-
ing to the syllable type. Calculating of expected type of syllable uses information
from encoded part of input. We need to know the type of last syllable. If the
last syllable is other-syllable, then it is known that this syllable contains a dot
and that the type of the last syllable is letter-syllable.

Text Compression: Syllables 41

Table 1. Expected types of syllables according type of previous syllable.

previous / expected type of syllable Expected syllable

small small
capital capital
mixed small
number other
other syllable without dot, last syllable from letters is not capital small
other syllable with dot, last syllable from letters is not capital mixed
other, last syllable from letters is capital capital

4 Technical Details

We supposed that all natural languages have their own characteristical set of
syllables. Its approximation for English and Czech was created by set of testing
documents. We created for each language and algorithm of decomposition into
syllables one database of frequent syllables from letters. For each language we
also created databases of frequent other syllables. Condition for adding syllable
to database was that its frequency is greater than 1 : 65,000. Each database
of syllables from letters contains approximately 3,000 syllables, whose sum of
frequency is 96–98 % of all syllables. Each database of other syllables contains
approximately 100 syllables, which sum of frequency is 99.5 % of all syllables.

These databases are used in initializations steps of compressing algorithms.
This can improve compression ratio on smaller documents.

Although we have database of frequent syllables, sometimes we receive syl-
lable K, which is not from this database and we must encode it. They are two
basic ways. The first way is to encode K as code of length of K followed by
the codes of individual characters from the syllable. The second (and better)
way is to encode K as code of syllable type followed by code of length of K
and codes of individual characters. We use the second way, because domain of
coding function for distinct characters is given by the type of syllable and as it
is smaller than in the first way. Numeric syllables are coded differently.

Encoding type of syllable depends on types of previous syllable and other
criteria as in HuffSyllable. Length of codes for each types are 1, 2, 3, and 4.
Average code length is 1.5 bits.

For encoding length of syllables are used two static Huffman trees, the first
one for letter-syllables and the second one for other-syllables. Trees are initialized
from statistics received from text documents.

For encoding distinct characters there are used two adaptive Huffman trees,
the first one for syllables from letters and the second one for other syllables.

Numeric-syllables are coded differently from other types of syllables. We
discover that numbers in text are naturally divided into a few categories. The
first category contains small numbers (1–100), the second category represent year
(1800–2000), in the third category there are very large numbers (for example

42 Jan Lánský, Michal Žemlička

5,236,964) that usually have separated groups of digits to blocks by three. But
these large numbers are decomposed into numeric-words and other-words. So we
set maximal length of numeric-word to 4, longer numeric-words are split. For
coding number of digits 2-bits binary coding is used. For coding distinct digits
binary phased coding [4] is used.

5 Experimental Results

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5 - 50 kB 50 - 100 kB 100 - 500 kB 500 - 2000 kB 2000 - 5000
kB

Size of file

C
om

pr
es

s
ra

tio
 in

 b
pc

 (l
ow

er
 v

al
ue

 is
 b

et
te

r)

English: compress 4.0 Czech: compress 4.0
English: LZWL on syllables Czech: LZWL on syllables
English: LZWL on words Czech: LZWL on words

Fig. 1. Comparison of LZW-based methods on English and Czech

For testing there were used two sets of documents in plain text format. The
first set contains 69 documents in Czech with total size of 15 MB. Most of these
documents were received from [11]. The second set contains 334 documents in
English with total size of 144 MB. In this set there are documents from project
Gutenberg [12] and bible.txt from Canterbury corpus [9]. From each file form
project Gutenberg there were removed first 12 kB of information about project
because it was the same in all documents.

Text Compression: Syllables 43

Table 2. Comparison of compression ratio in bits per character on English documents

Method\file 5–50 kB 50–100 kB 100–500 kB 500–2000 kB 2000–5000 kB

LZWL+PUL 3.31 3.09 2.87 2.64 2.37
LZWL+PUR 3.36 3.14 2.92 2.69 2.39
LZWL+PUML 3.32 3.10 2.88 2.65 2.38
LZWL+PUMR 3.32 3.10 2.89 2.66 2.38
LZWL(words) 3.22 3.03 2.86 2.62 2.36
compress 4.0 3.79 3.57 3.34 3.27 3.08
HS+PUL 3.23 3.18 3.15 3.10 2.97
HS+PUR 3.30 3.26 3.22 3.18 3.03
HS+PUML 3.26 3.22 3.19 3.15 3.02
HS+PUMR 3.27 3.23 3.20 3.16 3.02
HS(words) 2.65 2.58 2.52 2.38 2.31
ACM(words) [3] 2.93 2.74 2.55 2.35 2.27
FGK [2] 4.59 4.60 4.60 4.58 4.54
bzip2 [8] 2.86 2.60 2.40 2.21 2.03

Table 3. Comparison of compression ratio in bytes per character on Czech documents

Method\file 5–50 kB 50–100 kB 100–500 kB 500–2000 kB 2000–5000 kB

LZWL+PUL 4.14 3.83 3.59 3.34 —
LZWL+PUR 4.07 3.77 3.56 3.32 —
LZWL+PUML 4.07 3.77 3.56 3.31 —
LZWL+PUMR 4.07 3.77 3.55 3.31 —
LZWL(words) 4.56 4.19 3.99 3.69 —
compress 4.0 4.35 4.08 3.90 3.81 —
HS+PUL 3.97 3.89 3.89 3.81 —
HS+PUR 3.86 3.79 3.80 3.75 —
HS+PUML 3.86 3.79 3.80 3.74 —
HS+PUMR 3.87 3.79 3.80 3.75 —
HS(words) 3.71 3.51 3.43 3.21 —
ACM(words) 3.83 3.50 3.29 3.14 —
FGK 4.97 4.95 5.00 4.99 —
bzip2 3.42 3.10 2.88 2.67 —

44 Jan Lánský, Michal Žemlička

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

5 - 50 kB 50 - 100 kB 100 - 500 kB 500 - 2000 kB 2000 - 5000
kB

Size of file

C
om

pr
es

s
ra

tio
 in

 b
pc

 (l
ow

er
 v

al
ue

 is
 b

et
te

r)

English: Huffman coding on characters Czech: Huffman coding on characters
English: HuffSyllable on syllables Czech: HuffSyllable on syllables
English: HuffSyllable on words Czech: HuffSyllable on words

Fig. 2. Comparison of Huffman-based methods on English and Czech texts

6 Conclusion

In this paper we have introduced idea of syllable-based compression, its ad-
vantages and disadvantages. We have formally defined letters, syllable, words
and algorithm of decomposition into words. We have introduced four univer-
sal algorithms of decomposition into words. We have created two syllable-based
compression methods that use alternation of syllable types in sentences. The
first method is based on algorithm LZW, the second on Huffman coding. The
experimental results of these algorithms confirm our predictions, that tested
syllable-based algorithms outperformed their character-based counterparts for
both tested languages. Comparison of word-based and syllable-based versions
of Huffman and LZW codings led to the result that in English the word-based
versions of both algorithms outperform their syllable-based counterparts and
in Czech the results are ambiguous: for Huffman coding word-beased version
outperformed syllable-based one, for LZW coding the syllable-based one outper-
formed the word-based one.

In the future we want to decrease space and time requirements of imple-
mented algorithms. We planned to addapt next syllable-based algorithms from
their character-based versions, for example bzip2. We want to test our algo-
rithms on more languages with rich morphology, for example on German and
Hungarian.

Text Compression: Syllables 45

References

1. D. A. Huffman. A method for the construction of minimum redundancy codes.
Proc. Inst. Radio Eng., 40:1098–1101, 1952.

2. D. E. Knuth. Dynamic Huffman coding. J. of Algorithms, 6:163–180, 1985.
3. A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM

Transactions on Information Systems, 16:256–294, 1998.
4. P. Elias. Universal codeword sets and representation of the integers. IEEE Trans.

on Information Theory, 21(2):194–203, 1975.
5. S. W. Thomas, J. McKie, S. Davies, K. Turkowski, J. A. Woods, and J. W. Orost.

Compress (version 4.0) program and documentation, 1985.
6. T. A. Welch. A technique for high performance data compression. IEEE Computer,

17(6):8–19, 1984.
7. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing

Documents and Images. Van Nostrand Reinhold, 1994.
8. The bzip2 and libbzip2 official home page. http://sources.redhat.com/bzip2/ as

visited on 6th February 2005.
9. Canterbury corpus. http://corpus.canterbury.ac.nz.

10. Compact Oxford English Dictionary. http://www.askoxford.com/ as visited on 3rd
February 2005.

11. eknihy. http://go.to/eknihy as visited on 2nd February 2005.
12. Project Gutenberg. http://www.promo.net/pg.

Vector model improvement by FCA
and Topic Evolution

Jan Martinovič and Petr Gajdoš

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{Petr.Gajdos, Jan.Martinovic}@vsb.cz

Vector model improvement by FCA

and Topic Evolution

Jan Martinovič and Petr Gajdoš

Department of Computer Science, VSB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{Petr.Gajdos, Jan.Martinovic}@vsb.cz

Abstract. Presented research is based on standard methods of infor-
mation retrieval using the vector model for representation of documents
(objects). The vector model is often expanded to get better precision
and recall. In this article we have mentioned two approaches of vector
model expansion. The first approach is based on hierarchical clustering.
Its goal is to find a list of all documents they have most similar topic to
the requested document. The second one is the document classification
based on formal concept analysis. We have tried to evaluate all concepts
and computed the importances of documents. At last have compared the
results of our approach based on formal concept analysis and the results
of classical vector model.

Keywords: Vector, FCA, Moebius, Topic Evolution, Clustering

1 Introduction

There are various systems for searching in document collections. They are based
on vectors, probabilistic and another models for representation of documents,
queries, rules and procedures. Each of the models contains a rank of limitations.
Therefore we usually don’t obtain all relevant documents. In our research we have
to mentioned two approaches of vector model expansion. The first approach is
based on hierarchical clustering. Its goal is to find a list of all documents they
have most similar topics to the requested document. The second one is the
document classification based on formal concept analysis. In following chapter,
we have described classic vector model, cluster analysis and basic definition from
formal concept analysis, which we needed for next computation. Then we have
described our approaches for vector model improvement. In the fourth chapter,
we have demonstrated benefits of our approach.

2 Background

2.1 Vector model

The vector model [12] of documents is dated back to 70th of the 20th century.
In vector model there are documents and users queries represented by vectors.

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 46–57, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

Vector model improvement by FCA and Topic Evolution 47

We use m different terms t1 . . . tm for indexing n documents. Then each
document di is represented by a vector:

di = (wi1, wi2, . . . , wim) ,

where wij is the weight of the term tj in the document di.
An index file of the vector model is represented by matrix:

D =

w11w12 . . .w1m

w21w22 . . .w2m

...
...

. . .
...

wn1wn2. . .wnm

,

where i-th row matches i-th document, and j-th column matches j-th term.
In a vector model a query is represented by m dimensional vector:

q = (q1, q2, . . . , qm) ,

where qj ∈ 〈0, 1〉m. On the basis of the query q we can compute coefficient of
similarity for each document di. This coefficient can be understood as ”distance”
between the document’s vector and the vector of the query. We used cosine
measure for computing this similarity:

sim(q, di) =

∑m

k=1 (qkwik)
√

∑m

k=1 (qk)
2 ∑m

k=1 (wik)
2

The similarity of two documents is given by following formula:

sim(di, dj) =

∑m
k=1 (wikwjk)

√

∑m

k=1 (wik)
2 ∑m

k=1 (wjk)
2

For more information see [12].

2.2 Cluster analysis

The main goal of the cluster analysis is to find the fact, if there are any groups of
similar objects. These groups are called clusters. We focuse on object clustering
that can be divided in two steps. Firstly, we create the clusters and then we look
for relevant clusters [7]. The reason of the cluster analysis is contained in the
clusters hypothesis [12].

The searching process of an ideal fragmentation of objects is also called clus-
tering. We use an agglomerative hierarchical clustering based on the similarity
matrix:

At the beginning each object is considered as one cluster. Clusters are joined
together in sequence. The algorithm is over, when all objects form only one
cluster.

48 Jan Martinovič, Petr Gajdoš

Similarity matrix SimC for collections C may be described with:

SimC =

sim11 sim12 . . .sim1n

sim21 sim22 . . .sim2n

...
...

. . .
...

simn1simn2. . .simnn

,

where i-th row matches i-th document and j-th column j-th document.

2.3 Formal Concept Analysis

FCA has been defined by R. Wille and it can be used for hierarchical order
of objects based on object’s features. The basic terms are formal context and
formal concept. In this section there are all important definitions the one needs
to know to understand the problematics.

Definition 1. A formal context C = (G,M,I) consists of two sets G and M and
a relation I between G and M. Elements of G are called objects and elements of
M are called attributes of the context. In order to express that an object g is in
a relation I with an attribute m, we write gIm or and read it as ”the object g
has the attribute m”. The relation I is also called the incidence relation of the
context.

Definition 2. For a set A ⊂ G of objects we define

A↑ = {m ∈ M | gIm for all g ∈ A} (1)

-the set of attributes common to the objects in A. Correspondingly, for a set
B ⊂ M of attributes we define

B↓ = {g ∈ G | gIm for all m ∈ B} (2)

-the set of objects which have all attributes in B.

Definition 3. A formal concept of the context (G,M,I) is a pair (A, B) with
A ⊆ G, B ⊆ M , A↑ = B and B↓ = A. We call A the extent and B the intent of
the concept (A, B).

Definition 4. Let M be the totality of all features deemed relevant in the specific
context, and let I ⊆ G×M be the incidence relation that describes the features
possessed by objects, i.e. (g,m) ∈ I whenever object g ∈ G possesses a feature
m ∈ M . For each relevant feature m ∈ M , let λ(m) ≥ 0 quantify the importance
or weight of feature m. The diversity value of a set S is defined as

v(S) =
∑

m∈M :(g,m)∈I for some g∈S

λ(m) (3)

Our approach is also based on Conjugate Moebius Function and the on some
properties go out from the Theory of diversity and Formal concept analysis.

Vector model improvement by FCA and Topic Evolution 49

Theorem 1. For any function v : 2M → R with v(∅) = 0 there exists unique
function λ : 2M → R, the Conjugate Moebius Inverse function, such that λ(∅) =
0 and for all S,

v(S) =
∑

A:A∩S 6=∅

λ(A) (4)

Furthermore, the Conjugate Moebius Inverse λ is given by the following formula.
For all A 6= ∅,

λ(A) =
∑

A:A∩S 6=∅

(−1)|A|−|S|+1 ∗ v(S) (5)

where S denotes the complement of S in M.

The diversity of an object (document) g is the sum of all weights of all
features which are related to the object according to the incidence matrix. It
conveys information about partial importance of an object but doesn’t clearly
display other dependences.

do(g) =
∑

m:m∈M and (gIm)∈I

λ(m) (6)

Next characteristic is called the sum of diversities of all objects. Actually,
the objects of one concept can “cover” all features.

sdo(C) =
∑

g:g∈C

do(g) (7)

The importance of the object (document) g is the main point of our method.
The value represents the importance from these aspects:

• Uniqueness - Is there any other similar object?
• Range of description - What type of dimension does the object describe?
• Weight of description - What is the weight of object in each dimension?

impo(g) =
∑

C:C∋g

sdo(C)

v(S)
λ(A) do(g) (8)

For more information see [3]

3 Vector Model Improvement

3.1 Using FCA to obtain the importance of documents

This method is based a) on the partial ordering of concepts in the concept lattice
and b) on the inverse calculation of weights of objects using Moebius function
and defined characteristics. Particular steps are illustrated by fig.[1] and briefly
described in this chapter.

50 Jan Martinovič, Petr Gajdoš

Fig. 1. Getting importances of objects (documents)

First we obtain the input data (documents and words) like a table or matrix.
The second step - scaling method is used to create an input incidence matrix.
Every dimension can be scaled to a finite number of parts to get the binary values
or we can only change non-zero values for number one, otherwise number zero.
The output of transformation is an incidence matrix that we need as input for
the concept calculation. Next the power set of concepts is computed using FCA
algorithms. We can create the “concept lattice” and draw the Hasse diagram,
but it’s not important in our method. But it can be useful to show dependences
between concepts, if we need it. We use only the list of concepts. After that, we
can compute the basic characteristics for each concept according to the formulas
(4), (5), (6), (7). Finally, we compute the importance of objects according to the
formula (8). Obtained values provide us the criteria to sort the set of objects.

3.2 Evolution of topic

Our research concerns with the topics undergo an evolution. Lets assume doc-
ument from collection of documents, that describes the same topic. It is clear,
there are some other documents in the collection that describes the same topic,
but they use different words to characterize the topic. The difference can be
caused by many reasons. The first document focused on the topic use some set
of words and next documents may use synonyms or for example exploration of
new circumstances, new fact, new political situation etc. [4].

The result of searching an evolution of topic is to engaged query finding the
lists of documents related by thematic with engaged query. We mean the query
as query sets by terms or as document which is set as relevant.

We define this algorithm based on formal concept analysis and another algo-
rithm for clustering. Our research gives us the answer for the question “What is
the better way to improve the results of vector model?”

This is our algorithm using FCA and Moebius function:

Vector model improvement by FCA and Topic Evolution 51

Algorithm TOPIC-FCA:

1. We make the query transformation. It means that we create weighted vector
of terms.

2. We compute the importances of documents (objects) by the formula 8. and
we make the list of the documents and their importances.

3. We find the relevant document reld in the ordered list.
4. In finite steps, we look for “nearest” documents. The “nearest” document is

the document, that has the smallest difference between its weight and the
weight of reld. Founded document is excluded before next step.

Then we use this algorithm for clustering:

Algorithm TOPIC-CA:

1. We choose the total number of documents we want (’level’).
2. We find leaf cluster which contain selected relevant document.
3. We get up in hierarchy.
4. We explore neighbouring clusters. First we select the cluster created on the

highest sub-level. Each document, which we find, we add to the result list.
When the count of all documents in the result list equal to ’level’ we break
finding.

5. We repeat the step 3.

3.3 Sort Response in Vector Model

The collection of documents responses to the query in the vector model, which
is ordered by the coefficient of similarity of the query and the document. In this
part, we present the method that can change this response by asking to the
evolution of topic from clusters or concepts. Our approach is based on removing
all non-relevant documents from the query and next on adding another relevant
documents to the query. We have developed next algorithm for this change:

Algorithm SORT-EACH, this algorithm moves all documents in a result of
the vector model query so that the documents belong to the same evolution of
topic are closer to each other:

1. Collection of the documents from the vector query is marked as CV .
2. The new sorted collection is marked as CS and the count of its documents

is a new value of the variable count.
3. We choose the total number of documents in evolution of topic and we mark

it as level.
4. We do next sorting:

foreach document DV in CV do

if CS is empty then

add DV to collection CS

goto Continue

52 Jan Martinovič, Petr Gajdoš

end

To document DV found by algorithm TOPIC-FCA (or TOPIC-CA)
collection of evolution of topic CT . Count of documents in topic is
level + 1 (document DV).

foreach document DT in CT within document DV do

if document DT is in CS then

add the document DV behind DT do CS

goto Continue
end

end

if not added DV then

add DV to end of collection CS

label: Continue
end

5. We return collection CS to user.

4 Illustrative sample of vector model improvement

Following tables show experimental results on generated data. Documents’ im-
portances were computed according to formula 8. The document selected by
user is highlighted. This is the input document in TOPIC algorithms above.
Each query is transformed to the vector of weights of terms. We use simplified
matrix of documents and terms. The number “1” means that the document on
the row consists the term in given column.

In the tables, we can see, that a vector queries give us worse results in some
occurrence because they return zero-values of documents that don’t have com-
mon terms. But, these documents can be about the same theme described by
different terms (words). So we use the SEARCH-EACH algorithm for improve
vector query by TOPIC-FCA or TOPIC-CA. We use the new TOPIC-FCA al-
gorithm in these samples. See [4] to get another experiments.

Table 1. The results after inserted query “111111111111”

query 1 1 1 1 1 1 1 1 1 1 1 1
t1 t2 t3 t4 t5 t4 t7 t8 t9 t10 t11 t12 Document’s importance Vector query

doc. 1 1 1 1 36 0.5

doc. 2 1 1 1 36 0.5

doc. 3 1 1 1 36 0.5

doc. 4 1 1 1 36 0.5

Table 1 is very simple. We enter the query “111111111111”. It means that
we are looking for all relevant documents which contain all possible words. A
vector query return all documents with the same relevancy because each of

Vector model improvement by FCA and Topic Evolution 53

them contains three requested terms. Computed TOPIC-FCA (Importances of
objects) brings zero improvement.

Table 2. The results after inserted query “111111111111”

query 1 1 1 1 1 1 1 1 1 1 1 1
t1 t2 t3 t4 t5 t4 t7 t8 t9 t10 t11 t12 Document’s importance Vector query

doc. 1 1 1 1 1 66.66666667 0.57735

doc. 2 1 1 1 38 0.5

doc. 3 1 1 1 36 0.5

doc. 4 1 1 1 36 0.5

Next, we describe table 2. The values of documents’ importances show us
the relative importances according to inserted query. There are only small dif-
ferences between the importances of objects and vector query. The distance
between document number 1 and selected document number 2 is larger then the
distance between document number 2 and 3 (see the difference between docu-
ments’ importances). The distance of the vector query and each document plus
the distance between documents are the main reason of this appearance. It is
better to describe this effect in the following table 3.

Table 3. The results after inserted query “000111000000”

query 0 0 0 1 1 1 0 0 0 0 0 0

t1 t2 t3 t4 t5 t4 t7 t8 t9 t10 t11 t12 Document’s importance Vector query

doc. 1 1 1 1 1 1 1 1 1 1 1 1 1 295 0.5

doc. 2 1 1 1 37.33333 1

doc. 3 1 1 1 1 54.4 0.288675

doc. 4 1 1 1 10.8 0

The vector query is “000111000000”. We selected the document number 2
again. Although the first document contains the same terms as the second docu-
ment, the distance between them is very large because of great number of terms
the second document does not contain. Then, the evolution of topic of the second
document is doc3, doc4 and at last doc1. So we get different ordering than the
ordering after vector query.

The table 4 shows the main deficiency of the vector query. When we insert
query “000111000000” we can not obtain the fourth document. But our method
include this document because of a similarity to selected document number 2. So
we can find new dependences between documents they can be about the same
theme.

54 Jan Martinovič, Petr Gajdoš

Table 4. The results after inserted query “000111000000”

query 0 0 0 1 1 1 0 0 0 0 0 0
t1 t2 t3 t4 t5 t4 t7 t8 t9 t10 t11 t12 Document’s importance Vector query

doc. 1 1 1 1 1 1 1 1 94.93333333 0.436436

doc. 2 1 1 1 1 53.2 0.866025

doc. 3 1 1 1 1 47 0.288675

doc. 4 1 1 1 1 26 0

Table 5. The results after inserted query “000111000000”

query 0 0 0 1 1 1 0 0 0 0 0 0
t1 t2 t3 t4 t5 t4 t7 t8 t9 t10 t11 t12 Document’s importance Vector query

doc. 1 1 1 1 1 1 41.86111111 0

doc. 2 1 1 1 1 44.5 0.866025

doc. 3 1 1 1 1 45.83333333 0.288675

doc. 4 1 1 1 1 28.6 0

The last table 5 shows better all hidden dependences between documents.
The documents number 1 and 4 are not included in vector query, but we can say
there can be some references between them because of common term number 9.
The evolution of topic of selected document is doc3, doc1 and doc4.

We tried to show the importance of our method in simple examples. If we
use the TOPIC-FCA or TOPIC-CA for vector query improvement we can find
another dependences between documents and we can get better ordering of re-
quested documents.

4.1 Sample graphs

Following graphs show documents’ distances from selected document number
two. The graphs on the left show distances of documents after using TOPIC-
FCA algorithm and the graphs on the right correspond to the results of the
vector query. All distances were computed from selected document number 2.

Graph description:

– Node represent a document or a cluster of document if the documents’ dis-
tance is zero. Node’s numbers correspond to number of documents.

– Edge connect comparable documents (nodes). The value means the distance
of appropriate documents.

Vector model improvement by FCA and Topic Evolution 55

Documents’ distances computed from table 1.

Documents’ distances computed from table 2.

Documents’ distances computed from table 3.

56 Jan Martinovič, Petr Gajdoš

Documents’ distances computed from table 4.

Documents’ distances computed from table 5.

5 Conclusion and future work

We have described new method for vector query improvement based on formal
concept analysis and Moebius inverse function. The known deficiencies of vector
model have been suppressed using TOPICs and SEARCH-EACH algorithms. In
the future work we would like to test our methods on real data. Our presented
methods can be applied on small data sets or on large collections of documents.

References

1. Berry, M. W (Ed.): Survey of Text Mining: Clustering Classification, and Retrieval.
Springer Verlag 2003.

2. Baeza-Yates R., Ribeiro-Neto B.: Modern Information Retrieval. Addison Wesley,
New York, 1999.

3. Ďuráková, D., Gajdoš, P.: Indicators Valuation using FCA and Moebius Inversion
Function. DATAKON, Brno, 2004, IBSN 80-210-3516-1

Vector model improvement by FCA and Topic Evolution 57

4. Dvorský J., Martinovič J., Snášel V.: Query Expansion and Evolution of Topic in
Information Retrieval Systems, DATESO 2004, ISBN: 80-248-0457-3.

5. Dvorský J., Martinovič J., Pokorný J., Snášel V.: A Search topics in Collection of
Documents.(in Czech),Znalosti 2004, ISBN: 80-248-0456-5.

6. Ganter B., Wille R.: Formal Concept Analysis. Springer-Verlag, Berlin, Heidelberg,
1999.

7. Christis Faloutsos, Douglas Oard: A Survey of Information Retrieval and Filtering
Methods, Univ. of Maryland Institute for Advanced Computer Studies Report,
College Park, 1995.

8. Keith Van Rijsbergen: The Geometry of Information Retrieva, Cambridge Univer-
sity Press, 2004.

9. Kummamuru K, Lotlikar R., Roy S., Singal K., Krishnapuram R.: A Hierarchi-
cal Monothetic Document Clustering Algorithm for Summarization and Browsing
Search Results, WWW2004, New York, USA.

10. Nehring, K. and Puppe, C.: Modelling phylogenetic diversity. Resource and Energy
Economics (2002).

11. Nehring, K.: A Theory of Diversity. Ecometrica 70 (2002) 1155 1198.
12. Pokorný J., Snášel V., Húsek D.: Dokumentografické informačńı systémy.

Karolinum, Skriptum MFF UK Praha, 1998.
13. C.J. van Rijsbergen: Information Retrieval (second ed.). London, Butterworths,

1979.
14. Tsunenori Ishioka: Evaluation of Criteria for Information Retrieval, International

Conference on Web Intelligence, IEEE Computer Society, 2003, ISBN 0-7695-1932-
6.

15. S. Vempala: The Random Projection Method, Dimacs Series in Discrete Mathe-
matics and Theoretical Computer Science, 2004.

Unsupervised clustering with growing
self-organizing neural network – a comparison

with non-neural approach

Martin Hynar, Michal Burda, and Jana Šarmanová

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
{martin.hynar, michal.burda, jana.sarmanova}@vsb.cz

Unsupervised clustering with growing
self-organizing neural network – a comparison

with non-neural approach

Martin Hynar, Michal Burda, Jana Šarmanová

Department of Computer Science, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 00, Ostrava – Poruba, Czech Republic
{martin.hynar, michal.burda, jana.sarmanova}@vsb.cz

Abstract. Usually used approaches for non-hierarchical clustering of
data are well known k-means or k-medoids methods. However, these
fundamental methods are poorly applicable in situations where number
of clusters is almost unpredictable. Formerly, they were adapted to al-
low splitting and merging when some defined criterion is met. On the
other hand there are also methods based on artificial neural networks
concretely on self-organizing maps. One of the interesting ideas in this
domain is to allow growing of the net which corresponds to adapted k-
means method. In this article we are going to compare both approaches
in a view of ability to detect clusters in unknown data.

Key words: data mining, cluster analysis, partitioning algorithms, compet-
itive learning, self-organizing map, growing neural network.

1 Introduction

In common practice of various domains, e.g. pattern recognition (recognition
of objects in range of data, letters), information retrieval (grouping documents,
looking for common topics), data mining (searching for interesting patterns in
arbitrary data sets) there could be used as a valuable tool some clustering tech-
nique. The most widely used techniques are mainly k-means based methods (see
[5], [3], [1]), which are easy to use and obtained results are fairly understand-
able. Nevertheless, these methods are too static in a particular point of view;
at the beginning we have to specify the number of expected clusters and the
algorithm is then responsible to find them in the data set. But, what if we could
not determine this number? There are two alternatives to solve such problem.

• Firstly, we can do multiple computations with varying number of expected
clusters. Such approach is admissible only in situations where input data set
is not to extensive; on large data it will be very time consuming. Moreover,
the decision what partitioning is appropriate is then based on a subjective
estimation.

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 58–68, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

Unsupervised clustering with growing self-organizing NN 59

• Second solution is in adaptation of the algorithm where it will be allowed
to split and/or merge clusters according to some predefined condition. Usu-
ally, clusters are splitted if the inter-cluster variability increases over some
threshold and merged if the typical points of neighbouring clusters are near
enough. We can also ignore insufficiently numerous clusters.

The second solution was used for example in algorithms like isodata (see
[7], [4], [5]) or class (see [7].

On the other hand, we can use a model of artificial neural network based on
competitive learning known as the self-organizing map (som) or Kohonen map
(see [6] or [8]). It is known that fundamental feature of som is to preserve data
topology. So, neurons of the map are likely to occupy the place in the input
space where more dense places are situated. The basic model of som consists of
neurons whose quantity is specified in advance. That is, with this model we are
able to discover only a predefined number of clusters.

Like in previous case also som was adapted to allow the topology grow. One
of the usable approaches is the Growing neural gas (see [2])

In this article we first re-introduce the k-means algorithm in section 2 and one
of its derivative (class method) allowing adaptation of the number of clusters
in section 3. In the section 4 we focus on fundamentals of som and on brief
introduction of Growing neural gas algorithm in section 5. In the 6 there are
provided some experiments with the comparison of the results obtained with
both types of methods.

2 k-means based methods

So called partitional clustering methods could be stated as “given N patterns
in n-dimensional space, determine the partition of the patterns into k groups
where patterns in the same group are more similar than patterns from different
groups” The notion of the patterns similarity have to be adopted in advance and
different algorithms use different ones.

Moreover, the issue of determining the appropriate k is not decidable in all
situations. If there exist some general perspective over clustered data, we can use
a fixed value of k. The task of a partitional algorithm is then to locate clusters
in the input space. If we are not able to determine k at the beginning, we could
use trial-and-error way with modifying clustering parameters. However, there
are also methods trying to locate clusters in the input space and to determine
the number of such clusters at a time.

An algorithm, generally known as k-means clustering is the one where the
number of expected clusters have to be given as the clustering parameter. Such
algorithm given the set of patterns then tries to locate k clusters.

Choose typical points:
Place k typical points of clusters according to chosen method into the mul-
tidimensional space containing examined patterns.

60 Martin Hynar, Michal Burda, Jana Šarmanová

Clustering:
Assign each pattern to exactly one typical point – to the nearest one.

Recompute typical points:
Using all patterns assigned to particular cluster recompute its typical point
as the mean value.

Check termination condition:
The computation ends if the termination condition is fulfilled. Typical con-
dition is that there are no or minimal changes in cluster memberships.

The problem of initial placing of k typical points could be solved using several
techniques. The simplest ones are choosing random points or randomly chooses
k input points.

Each pattern of the examined data set is then assigned to some typical point.
The appropriate one is determined as the one with the smallest Euclidean dis-
tance.

dE(x,y) =

√√√√ n∑
i=1

(xi − yi)2

When all patterns are processed the new typical points should be computed.
New typical point of a cluster is determined as a mean vector of patterns in
the group. The end of the algorithm usually becomes when no change in cluster
membership occurs in two subsequent iterations.

3 CLASS – where clusters may arise and disappear

A clustering method class is inspired in former method isodata which is in
comparison with k-means method able to refine the number of clusters during
the computation but it has some crucial disadvantages, mainly that many pa-
rameters need to be set by user. Such approach usually leads to incorrect results
if data are not understood properly. On the other hand, the class method in
most cases determines the parameters from the input data.

The class method proceeds in few steps. At the beginning, user has to
set three input parameters: maximum number of iterations gamma, minimum
number of members in a cluster thetan and the initial splitting threshold s0.
For the testing purposes we used a modified version of class method where it is
also possible to set the initial number of typical points K and choose arbitrary
method for placing them in the input space.

The very first step in the clustering is assigning each pattern to exactly one of
the typical points. This proceeds using the k-means algorithm described above.
After this the class method goes through three following steps:

Excluding small clusters:
All clusters with less than thetan members which were not changed during
last two iterations are excluded from the subsequent analysis.

Unsupervised clustering with growing self-organizing NN 61

Splitting clusters:
In the mth iteration we have to compute the splitting threshold sm

Sm = Sm−1 +
1− S0

GAMA

In each cluster we need to compute deviations (dij) between the typical point
and each pattern belonging to this typical point. Then, for the jth attribute
we can compute the average deviations Dj1 of patterns situated on the right
and Dj2 of the patterns situated on the left side.

Dj1 =
1
k1

k1∑
i=1

dij , Dj2 =
1
k2

k2∑
i=1

dij ,

where k1 and k2 are the numbers of points situated on the right and on the
left side of the typical point within given attribute. Now we are ready to
determine parameters controlling the partitioning of the clusters. For each
cluster we compute parameters a1 and a2 for patterns on the right side and
left side.

a1 = max
j

(
Dj1

maxxij

)
, a2 = max

j

(
Dj2

maxxij

)
where j = 1, 2, . . . , p and i denotes all points from the same cluster. If in mth

iteration holds: number of clusters is less than 2K, a1 > Sm or a2 > Sm and
number of processed patterns greater than 2(THETAN + 1) then we split
the cluster with respect to attribute j where a1 or a2 is maximal. The newly
created clusters contain patterns from the right and left side of the typical
point within the jth attribute.

Revoking clusters:
To decide which cluster has to be revoked we need to compute average min-
imum distance of clusters in advance.

TAU =
1
h

h∑
i=1

Di

where h is current number of clusters and Di is the minimum distance of
ith typical point from the other ones. If Di < TAU for some cluster i and
number of clusters is greater than K

2 we revoke ith cluster. Patterns belonging
to revoked cluster are dispersed to the nearest typical points.

These steps proceed until clusters remaining unchanged or maximum number
of iterations gama is reached.

4 Self-organizing map expresses the topology

The self-organizing map (som) is an artificial neural network based on an issue
of competitive learning. The net consists of a set A with n neurons, represented

62 Martin Hynar, Michal Burda, Jana Šarmanová

with weight vectors wi. Furthermore, neurons are mutually interconnected and
these bindings form some topological grid (usually rectangular or triangular).
If we present a pattern x into this network then exactly one neuron could be
the winner and its weights are adapted proportionally to the pattern (the neu-
ron is then closer). Moreover, neurons from the neighbourhood of the winner
are adapted too, but not so intensively. Neighbourhood N(c) could be formally
defined as set of neurons that are topologically near to the winner.

The winner of the competition is determined as the neuron with the minimum
distance to the pattern.

c = arg min
a∈A
{||x−wa||} (1)

Then, adaptation of the weights proceeds using the equation (2) generally
known as Kohonen’s rule.

wji(t+ 1) =

{
wji(t) + hcj(t)(xi(t)− wji(t)) j ∈ N(c)
wji(t) otherwise.

(2)

Weight vectors for the next iteration t+ 1 of the winner and neurons in the
neighbourhood are adapted in a way that current weights are modified (either
added or subtracted) with a variance of current weight and input pattern.

Parameter hcj(t) is usually represented with unimodal Gauss function with
center in c, width σ(t) and maximal unit movement h0(t). Values of σ(t) and
h0(t) are decreasing in time – this corresponds with rough learning in the begin-
ning and fine learning later.

hcj(t) = h0(t) exp
(
− ||wc −wj ||2

2σ2(t)

)
One of the features of som is its topology preserving behaviour. This means,

that som tries to adapt weights of neurons to cover the most dense regions and
therefore som naturally finds data clusters. The limitation of som lies in fact
that it is designed to have number of neurons specified as the input parameter
and immutable during the learning process.

5 A self-organizing map that grows

The Growing Neural Gas (gng) method [2] is the modification of the som where
number of neurons is not immutable input parameter but is changed during the
competition. Connections between neurons are not permanent as well. The result
of competition could be then set of separate neural networks covering some region
of the input data.

In the beginning the network itself contains only two neurons a1 and a2

representing two randomly chosen input patterns. Denote set of neurons as A
and set of connections as C which is empty in the beginning.

Unsupervised clustering with growing self-organizing NN 63

Competition
The pattern x is presented to the network. The winner s1 of competition
and the second nearest s2 neurons are determined using equation (1). If there
was not a connection between neurons s1 and s2 then it is created (C = C ∪
{(s1, s2)}). The age of the connection is set or updated to 0 (age(s1, s2) = 0).
The squared distance between the winner and the pattern is added to local
error variable.

∆Es1 = ||x−ws1 ||2

Adaptation
The weight vectors of the winner and its direct topological neighbours1 Ns1

are adapted by fractions εb and εn of the distance to the input pattern. This
is analogous to the Kohonen’s rule (equation (2)) described above.

∆ws1 = εb(x−ws1)
∆wi = εb(x−wi) ∀i ∈ Ns1

The age of all connections leading from the winner neuron are increased by 1
(age(s1, i) = age(s1, i) + 1 for all i ∈ Ns1).

Removing
If there exist some connections with age greater than given amax then all
are removed. If this step results in neurons with no connections then remove
also these standalone neurons.

Inserting new neurons
If the number of processed patterns reached an integer multiple of given
parameter λ then new neuron is inserted using following steps:
1. First of all, the neuron p with the largest accumulated local error is

determined using following equation.

p = arg max
a∈A
{Ea}

Among the neighbours of neuron p determine neuron r with largest ac-
cumulated local error.

2. Insert new neuron q to the network (A = A∪ {q}) and set its weight to
the mean value of p and r weight vectors.

wq =
1
2
(wp + wr)

3. Insert new connection between new neuron q and neurons p and r (C =
C ∪ {(p, q), (r, q)}). Remove the old connection between neurons p and r
(C = C − {(p, r)}).

1 Note, neuron i is in direct topological neighbourhood of the winner c if there exists
connection (i, c) between these two neurons.

64 Martin Hynar, Michal Burda, Jana Šarmanová

4. Local accumulated error variables of neurons p and r are decreased by
given fraction α.

∆Ep = −αEp ∆Er = −αEr

The accumulated error variable of the new neuron q is set to the mean
value of neurons p and r accumulated error variables.

5. Local accumulated error variables of all neurons in the network are de-
creased by given fraction β.

∆Ea = −βEa ∀a ∈ A

These several steps proceed until pre-defined termination condition is met.
This could be some performace measure or usually net size.

6 Examples and comparison

As an example data for the subsequent clustering we will use data determined
with distribution depicted in figure (1(a)). The highlighted regions are those
where data are located and white regions contain no data. For the purposes of
clustering using k-means method and class method we have to generate the
points complying given distribution in advance. A set of 1000 points from given
distribution is depicted in (1(b)). For the usage with the som and gng methods
we may use continuous pseudo-random generator of patterns from the given
distribution2.

(a) Distribution (b) Objects from distribution

Fig. 1. Sample data for clustering.

2 The same generator with the same seed we have also used to obtain set of discrete
patterns for “classical” clustering. Without injury on generality we may say that
explored sets of patterns were practically same.

Unsupervised clustering with growing self-organizing NN 65

First of all we have tested if k-means algorithm will produce similar parti-
tioning as som neural network. If the number of typical points and number of
neurons are set to actual number of clusters in data then both methods will
place its representatives to the centers of clusters. Results of clustering using
both methods with K = 4 are depicted in figure (2).

(a) k-means (b) som

Fig. 2. Clustering using k-means algorithm and som neural net with number of repre-
sentatives set to 4.

If the number of representatives is very slightly different from the actual
number of clusters then obtained results are hardly interpretable. If the number is
lesser then some representatives are trying to cover more clusters. If the number
is greater then extra representatives will join another representative and they will
cover one cluster with some more dense areas. The latter case may be incorrectly
explained as presence of more clusters. In fact, representatives started to explain
topology of clusters and besides finds more fine grained clusters. Figure (3)
depicts situation where K was set to value 5 and 25.

It is clear that som is able to discover clusters in the input space as well as
the k-means method.

Now we can focus on comparing the methods where splitting and merging of
clusters is allowed. In case of neural net approach we may talk about net growth.
One of the basic disadvantages of som is the inability to adapt its size according
to proportions in the data (like k-means). On the other side, gng can either add
neurons where the local error is to large or remove neurons that have no relation
to the rest (no existing connection).

The issue we are interested at this time is how the class method and the
gng method will proceed in clustering given data. Both methods are starting
with two representatives. The class method allows to add more representatives
in one iteration in contrast to gng which adds neurons after the pre-defined
chunk of steps passes. So, we compared obtained partitionings at moment where
both methods had identical number of representatives.

66 Martin Hynar, Michal Burda, Jana Šarmanová

(a) k-means with K = 5 (b) k-means with K = 25

Fig. 3. Clustering using k-means algorithm with number of representatives set to 5
and 25.

The very first comparison was taken when both methods reached 4 represen-
tatives (the situation is depicted in figure (4)). As it is predictable, representa-
tives are placed nearby the centers of the clusters to cover them as a whole.

(a) class (b) gng

Fig. 4. Clustering using class and gng algorithms - results with 4 representatives.

More interesting results were reached when both methods started co cover
clusters at the finer level. With 9 representatives we can distinguish little dif-
ferent behaviour of both methods. The dislocation of representatives obtained
with class method can be seen as dislocation of centers of circles with similar
perimeter in an effort to cover all patterns – spherical clusters. On the other
side the gng proceeds with an extended goal. The gng algorithm is covering
all patterns with the neurons and moreover it covers the cluster’s topology with
the connections. We may see that in the figure (5(b)) there are three groups of
interconnected neurons. We may interpret this situation for example as “there
are three clusters with topology given by connections”, but it is not so defini-

Unsupervised clustering with growing self-organizing NN 67

tive. In fact, there are four clusters but the gng method does not discover them
appropriately. Nevertheless, 9 representatives is still too little.

(a) class (b) gng

Fig. 5. Clustering using class and gng algorithms - results with 9 representatives.

Much more interesting results we can see when the number of representatives
reaches value 21. The dislocation of representatives obtained by both methods
is very similar and representatives cover all clusters effectively enough – they
express the topology. But, there is remaining one more question – what is the
resulting partitioning? In case of the class method we have a set of non-related
representatives. In 2-dimensional space we can do some visualisations to decide
but in multi-dimensional space is the resulting partitioning uncertain. The prob-
lem lies in fact that the number of clusters is not the only thing we want to know.
We need to know something more, it is how the clusters look like and how to
formally express the category the cluster represents. Another big issue is the
correctness of results obtained with these methods on multi-dimensional data.

(a) class (b) gng

Fig. 6. Clustering using class and gng algorithms - results with 21 representatives.

68 Martin Hynar, Michal Burda, Jana Šarmanová

The connections between neurons of gng are very helpful in this point of
view. They inform about which neuron belongs to which cluster. From the figure
(6(b)) we may decide on existence of 4 clusters and using the connections we can
also state some conclusions on their shape or topology. But note, in the network
could remain some edges that connect two neighbouring not so distant clusters.
Thus, the results obtained with gng method have to be evaluated carefully.

7 Conclusions

From the comparisons between k-means method and som neural network and
between the class method and gng neural network we see that utilizing neural
networks (with competitive learning) is good idea in the clustering domain. The
most important feature of such neural networks is their natural ability to find
dense areas in the input space. The extension of the basic som algorithm to
dynamically reflect relations in the data (possibility of the net growth) makes
neural networks even much more interesting.

The results obtained using both types of methods show that neural networks
are able to give at least the same results. Moreover, the fact that som-like neural
networks are likely to preserve the topology can mean that the results could be
even better. Nevertheless, as using any other method for arbitrary knowledge
discovery, the results have to be interpreted very carefully to be correct. This
holds also in this case.

References

1. Everitt, B. S., Landau, S., and Leese, M. Cluster analysis. Oxford University
Press, 2001.

2. Fritzke, B. A growing neural gas network learns topologies. Advances in neural
information processing systems 7 (1995).

3. Han, J., and Kamber, M. Data mining: Concepts and techniques. Morgan Kauf-
mann Publishers, 2000.

4. Jain, A. K., and Dubes, R. C. Algorithms for clustering data. Advanced reference
series. Prentice hall, 1988.

5. Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering: A review. ACM
Computing Surveys 31, 3 (September 1999), 264 – 323.

6. Kohonen, T. Self-organizing maps. Springer Verlag, 1984.
7. Lukasová, A., and Šarmanová, J. Metody Shlukové Analýzy. SNTL, 1985.
8. Š́ıma, J., and Neruda, R. Teoretické otázky neuronových śıt́ı. Matfyzpress, 1996.

On classification of XML document
transformations∗

Jana Dvořáková

Department of Computer Science, Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava, Slovak Republic

Jana.Dvorakova@dcs.fmph.uniba.sk

On classification of XML document

transformations

Jana Dvořáková?

Department of Computer Science, Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava

Jana.Dvorakova@dcs.fmph.uniba.sk

Abstract. As XML has become a very popular standard for data in
many fields, the domain of XML documents transformations is becoming
more and more important. In this paper we propose classification hierar-
chy for XML document transformations. We assign implemented trans-
formation systems into defined groups according to the type of possible
transformations. This enables user to choose appropriate transformation
system according to the requirements for transformation. Secondly, we
are concerned with the group of transformation systems, which enable
type transformation. We define underlying formal models in common
framework and discuss their applicability for these transformations.

Key words: XML, Structured document, Document type, Document transforma-

tion, Transformation classification

1 Introduction

XML (Extensible Mark-up Language) [28] is a meta-language recommended by
W3 Consortium in order to create structured documents. In XML document
structure, content and presentation are strictly separated. Unlike plain text, it
contains special tags, which decompose document into logical parts. Therefore
we say that XML belongs to the group of mark-up languages. Presentation of
XML document can be described by several languages, usually in external file.
Most common are XSL (Extensible Stylesheet Language) and CSS (Cascading
Stylesheet).

Nowadays the usage of XML is growing very fast. It is a suitable tool in
every field, where it is necessary to create document standards. Furthermore it
has become very popular as a format for data exchange among applications since
for programs it is necessary to mark semantics of data explicitly.

For this reasons various transformations are needed. Many transformation
systems for structured documents have been implemented, some of them are
based on formal models while others were created only ad-hoc. We have seen
several reviews of existing transformation systems ([19, 18, 20, 11]). The author

? This work was supported in part by the grant VEGA 1/0131/03

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 69–83, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

70 Jana Dvořáková

in [20] introduces also some basic categorization, however in none of these works
a complete classification system has been defined.

The rest of this paper is organized as follows: After defining some notions
used through-out the paper we introduce defined classification system in Section
3. We discuss reasons for choosing particular criteria and we assign implemented
transformations systems for structured documents into defined groups. In sec-
tion 4, we are dealing with one specific group of transformations, namely type
transformations. We are examining formal models on which these transforma-
tions are based and we define them in a common framework. At last we present
several results obtained by comparing these formal models. Section 5 contains a
brief conclusion and outlines our future research.

2 Notions and notations

2.1 XML document

Basic logical unit of an XML document is an element. The content of an element
is delimited by a start-tag and an end-tag. It can contain text and other nested
elements as well. Variables called attributes can be assigned to an element. Obvi-
ously, an XML document has a hierarchical structure and it can be represented
by a tree, where internal nodes are elements and leaves contain textual content.

The framework considered in this paper is restricted in two ways. Firstly, we
do not consider element attributes of XML documents since we are concerned
mainly with transformations at the level of elements. Secondly, we assume that
element names of XML documents are from a finite and known set denoted by E.
This enables us to define XML documents as trees over finite alphabets, which
is the most natural way as far as we consider XML documents transformation.
Furthermore we will use symbol Char for alphabet of characters allowed to
appear in the textual content of XML document. Char is specified in W3C
recommendation [28].

Definition 1. Let Σ, Γ be alphabets. The set of trees over (Γ, Σ) denoted by
TΓ (Σ) is defined as follows:

– a ∈ Σ, then t = a ∈ TΓ (Σ) and root(t) = a.

– A ∈ Γ , t1, . . . , tk ∈ TΓ (Σ), k > 0, then t = A(t1, . . . , tk) ∈ TΓ (Σ) and
root(t) = A.

– nothing else belongs to TΓ (Σ).

We call Σ a leaf alphabet and Γ an internal node alphabet. Alphabets Σ, Γ

do not need to be disjoint.

Obviously the set of XML documents denoted by D equals to the set of trees
over (E, Char), i.e., D = TE(Char).

On classification of XML document transformations 71

2.2 DTD

An XML document type is a class, which contains XML documents with similar
structure. It is specified by a type definition, which describes the set of elements,
that should be contained in the document as well as relationships among the
elements. W3C has defined two ways of notation - DTD and XML schema.
DTD is simpler and describes particularly syntax of the type while XML schema
introduces more aspects like namespaces, restrictions for attribute values, etc.
However, syntactic features of both models can be easily captured by context-
free grammar. We will use this concept in the rest of this paper. Now we will
define context-free grammars and their subset - type grammars, which describe
XML document types.

Definition 2. Context-free grammar (CFG) is a 4-tuple G = (N, T, P, S), where
N is an alphabet of nonterminal symbols, T an alphabet of terminal symbols,
P ⊆ N × (N ∪ T)∗ is a finite set of production rules and S ∈ N is a starting
symbol.

Definition 3. Let G = (N, T, P, S) to be a CFG, then a set of derivation sub-
trees of G denoted by SG is defined as follows:

– a ∈ T , then t = a ∈ SG.

– A ∈ N , t1, . . . , tk ∈ SG and A → root(t1), . . . , root(tk) ∈ P , then t =
A(t1, . . . , tk) ∈ SG.

– nothing else belongs to SG.

A set of derivation trees of G - TG is a subset of SG such that t ∈ TG ⇔ t ∈ SG

and root(t) = S.

A type grammar is a context free grammar G = (N, T, P, S), such that
N = E, T = Char. We denote its set of derivation trees DG since we consider
documents rather then general trees. Obviously it holds DG ⊆ D. Nonterminals
of a type grammar represent element names and the set of terminals equals to
the text alphabet.

If we have a given type grammar, it generates a class of XML documents,
which equals to the set of its derivation trees. Validation of XML document
against a grammar is a process, which gives us as a result an answer, whether
given XML document belongs to the class of documents generated by given
grammar. If the answer is yes, we say that the XML document is valid for a
given type grammar (or correct).

2.3 XML transformations

A transformation of an XML document takes some source documents as an
input, it processes them according to the transformation specification and it
gives target documents as an output.

72 Jana Dvořáková

It is reasonable to define a transformation of XML documents as a relation
on the set of XML documents rather then a function 1. As usual we begin with
more general definition, i.e., tree transformation.

Definition 4. Let Σ, Σ′, Γ , Γ ′ be alphabets. A tree transformation from (Γ, Σ)
to (Γ ′, Σ′) is a relation τ ⊆ TΓ (Σ)× TΓ ′(Σ′).

If we apply previous definition on XML documents, we obtain restricted
case again. Thus, an XML documents transformation is a relation τ ⊆ D ×D.
Obviously if we consider any XML document transformation, the source leaf
alphabet equals to the target leaf alphabet.

2.4 Tree properties

Now we introduce several definitions related to trees that we will need later in
this paper.

Let Σ, Σ′, Γ, Γ ′ be alphabets.

Let X = {x1, x2, . . .} be a set of variable symbols. For each k > 0, we denote
by Xk a set of first k variables, thus Xk = {x1, . . . , xk}. We denote by TΓ (Σ∪X),
TΓ (Σ ∪Xk) sets of trees with these variables, where it must hold Σ ∩X = ∅.

Definition of a tree substitution follows. Let t ∈ TΓ (Σ ∪ Xk), k > 0 and
t1, . . . , tk ∈ TΓ ′(Σ′). Then t[x1 ← t1, . . . , xk ← tk] is a tree obtained from t by
replacing each occurrence of xi by a tree ti, 1 ≤ i ≤ k2.

Let Z = {z1, z2, . . .} be a set of variables disjoint to X and k > 0. A set of
(Γ, Σ, k)-contexts denoted CΓ (Σ, k) is the set of trees t from TΓ (Σ ∪ Zk), such
that for each 1 ≤ i ≤ k the symbol zi appears exactly once in t.

We will use a simpler notation for context substitution. Let t to be a (Γ, Σ, k)-
context and t1, . . . , tk trees. Then we use t[t1, . . . , tk] instead of t[z1 ← t1, . . . , zk ←
tk].

Let t, t′ ∈ TΓ (Σ). Then t′ is a subtree of t if there exists such a context
β ∈ CΓ (Σ, 1) that t = β[t′].

For each tree t ∈ TΓ (Σ) path(t) ⊆ {1, 2, . . .}∗ is a set of all paths of the tree t,
so that each of them unambiguously identifies a node of the tree t. Then symbol
ε represents root(t). For each path w ∈ path(t), we denote by labelt(w) a label
of the node identified by w and by t|w a subtree under this node.

Let t ∈ TΓ (Σ), t′ ∈ TΓ ′(Σ′). We obtain tree t[w ←p t′] ∈ TΓ∪Γ ′(Σ ∪ Σ′)
from t by replacing subtree in w ∈ path(t) by tree t′.

Let t ∈ TΓ (Σ), patt ∈ TΓ (Γ ∪Σ). We say, that t and patt match, if there is
such a context γ ∈ CΓ (Σ, k) that t = γ[t1, . . . , tk] for some t1, . . . , tk ∈ TΓ (Σ)
and it holds patt = γ[root(t1), . . . , root(tk)].

1 For example. in the system SynDoc [17], several target documents can be generated
as the result of transformation and user can choose the most appropriate one.

2 In the definition of tree substitution variables are not typed, however, later we will
require newly connected subtrees to satisfy some specific conditions.

On classification of XML document transformations 73

3 Classification hierarchy

There are several possibilities, how to divide XML document transformations
into categories. According to the driving element of the transformation we ob-
tain three basic categories as follows. In each of them different techniques for
implementing particular transformation systems are used, thus, it is reasonable
to start with this criterion.

1. Source grammar transformations - Transformation process is driven by the
source structure. First, the source document is parsed and then according
to recognized syntactic elements parts of the output documents are con-
structed. Usually it is possible to check correctness of input documents, but
target correctness is not ensured in this case. If necessary, user must perform
validation explicitly. Next we can divide this category into two more specific
groups according to the way how the source document is parsed:

• Event-driven transformations - The source document is read as a data
stream. As the result, we obtain a list of recognized events. The event
can be an occurrence of a start-tag, an end-tag, an attribute, etc. The
transformation system reads the list o events and performs corresponding
actions. If we allow side-effect functions, an output can be generated
already at parsing time. As a formal model, an attribute grammar is
often used. Event-driven models require little memory, and provide fast
and effective way of accessing XML data. On the other hand, only simple
transformations can be performed since it is not possible to return to
an earlier part of the document. In some document transformers (e.g.
CoST [12, 7], OmniMark [8]) the list of recognized events is represented
by ESIS (Element Structure Information Set), which is the part of ISO
SGML standard [13]. However, currently especially SAX (Simple API
for XML) [26] is more and more in use as event-driven mechanism for
parsing XML documents. It generates specific SAX events and sends
them to the application.

• Tree-based transformations - First, an internal syntactic tree of the source
document is constructed and a target document is generated via queries
on this tree. In most of the cases transformation systems are based on
tree pattern matching and replacement. We can assign widely used XSLT
[29] and its predecessor DSSSL [14] as well as systems Scrimshaw [2],
Metamorphosis [22], Balise [3] and TranSID [20] to this group.

XSLT, a recommendation of W3 Consortium, has become very popular
recently. It is a language, itself written in XML, with powerful capabil-
ities for specifying transformations of XML documents. XSLT program
(called stylesheet) consists of a set of template rules. A template rule
associates a pattern, which matches nodes in the source document with
corresponding template that can be instantiated to form the target tree.
Although XSLT is a powerful transformation language, it has several
drawbacks. Firstly, it appears to be a complex language and therefore

74 Jana Dvořáková

transformation specification must be written by an expert. Secondly,
XSLT processor cannot guarantee the correctness of target documents
as well as other systems in this group. However, an XSLT stylesheet
can be produced as an output of some two-grammars systems (see next
section). Then it is ensured, that generated stylesheet specifies a type
transformation and XSLT processor can be used to perform transforma-
tion.

2. Target grammar transformations - Target document is created according
to the rules of a given target grammar while relevant data from a source
document are extracted via queries. This ensures target correctnes. However,
we do not need to have any information about source document type. We
found only one transformation system, which belongs to this group - TREX
[30].

3. Two grammar transformations (type transformations) - Documents of a
given source type are translated into documents of a given target type. Trans-
formation systems are mostly based on one of these formal models - syntax
directed translation schema, tree transformation grammar, descending tree
transducer and higher order attribute grammar. We discuss these models as
well as two grammar transformation systems in detail in the next section.
However, there are few systems, which performed two-grammars transfor-
mations, but underlying formal model cannot be clearly recognized. These
are Grif [25] and Thot [4].
From a different point of view, we distinguish static type transformations,
which translate whole documents, and dynamic type transformations, which
are used to perform dynamic operations on XML documents. An example is
cut and paste operation, which is a standard operation in XML document
editors. Unlike in common editors, in this case it is necessary to preserve
document structure. Thus, a local transformation must be performed in the
place, where a part of another document has been pasted.

4 Type transformations

The group of type transformations (or two-grammar transformations) is a spe-
cific one. In this case there must be only correct documents taken as an input
and correct documents must be generated on the output side. To satisfy these
conditions, it is usually inevitable to implement transformation system perform-
ing this kind of transformations on some underlying formal model. In this section
we introduce four formal models on which some of the implemented transforma-
tion systems are based. We developed common framework in which we define
these models. Our intention was to create a formal base, so that the models
can be studied and mutually compared later. We also present current results
obtained by comparing some of them according to their transformational power.
Obviously there is a direct proportion between the complexity of transformation
specification and the set of possible transformations. Thus, the more powerful
particular model is, the more complex specification the user is supposed to write.

On classification of XML document transformations 75

4.1 Syntax-directed translation schema

Definition 5. A syntax-directed translation schema - SDTS [1] is a 5-tuple Ω =
(N, Σ, ∆, R, S), where N is an alphabet of nonterminals, Σ, ∆ are input and
output alphabets, S ∈ N is the start symbol and R is a finite set of rules of the
form A → α, β, where α ∈ (N ∪ Σ)∗, β ∈ (N ∪∆)∗ and nonterminals in β are
a permutation of nonterminals in α.

In a rule A → α, β with each nonterminal from α there is associated an
identical nonterminal of β. If there is a multiple occurence of some nonterminal,
we indicate association by using integer superscripts. Obviously if we extend
definition of a SDTS by a renaming homomorphism for nonterminals, we can
use this model also in the case, when it is neccesary to associate nonterminals
with different names.

A context-free grammar Gs = (N, Σ, Ps, S), where Ps = {A → α | ∃β ∈
(N ∪∆)∗, A→ α, β ∈ R} is a a source grammar and Gt = (N, ∆, Pt, S), where
Pt = {A→ β | ∃α ∈ (N ∪Σ)∗, A→ α, β ∈ R} is a target grammar of SDTS Ω.

Now we mentioned two modifications of SDTS, which differ from the basic
model in a definition of rules:
• Simple SDTS - SSDTS
R is a finite set of rules of the form A → α, β, where α ∈ (N ∪ Σ)∗,
β ∈ (N ∪ ∆)∗, nonterminals in α, β are identical and the order of nontermi-
nals is preserved.
• Extended SDTS - ESDTS
R is a finite set of rules of the form A → α, β, where α ∈ (N ∪ Σ)∗,
β ∈ (N ∪ ∆)∗ and nonterminals in β are a permutation of a subset of non-
terminals in α.

A syntax-directed translation schema simulates derivations of two context-
free grammars with similar set of rules simultaneously. While using a SDTS
in the domain of syntax analysis it was sufficient to store only frontiers of the
derivation trees in configurations, if we consider tree transformations it is more
natural to keep the whole derivation tree. Then a transformation consists of
pairs of trees, where the first one is a derivation tree of the source grammar and
the second one is a derivation tree of the target grammar. We started from an
algorithm for structured documents transformations using an ESDTS presented
in [19]. We skip an operation of adding new nodes into the source tree since
authors do not specify exactly what subtree is embedded to the newly created
node.

Definition 6. A configuration of SDTS (SSDTS, ESDTS) Ω is a tree from the
set TN∪{�}(Σ ∪∆).

Definition 7. We say, that a pair of trees (A(t1, . . . , tn), A(s1, . . . , sm)), A ∈
N , t1, . . . , tn, s1, . . . , sm ∈ TN∪{�}(Σ∪∆) realizes a rule A→ u1 . . . un, v1 . . . vm ∈
R if the following holds:

1. u1 . . . un = root(t1) . . . root(tn) and v1 . . . vm = root(s1) . . . root(sm),

76 Jana Dvořáková

2. hN (u1 . . . un) = ui1 . . . uir
and hN (v1 . . . vm) = vj1 . . . vjp

= uik1
. . . uikp

,

i1, . . . , ir ∈ {1, . . . , n} (different), j1, . . . , jp ∈ {1, . . . , m} (different),
k1, . . . , kp ∈ {1, . . . , r} (different),

3. sjl
= tikl

for l ∈ {1, . . . , p}, sl = vl, vl ∈ ∆ ∪ {ε} for l /∈ {j1, . . . , jp} and
tl = ul, ul ∈ Σ ∪ {ε} for l /∈ {i1, . . . , ir}.

Definition 8. A translation step of SDTS (SSDTS, ESDTS) Ω is a relation
⇒Ω over the set of configurations defined as follows:

1. β[� (a)]⇒Ω β[a], a ∈ ∆ ∪ {ε}.
2. β[� (A(t1, . . . , tn))]⇒Ω β[A(� (s1), . . . , � (sm))] and a pair of trees

(A(t1, . . . , tn), A(s1, . . . , sm)) realizes some rule r ∈ R.

In both cases β is a context from CN∪{�}(Σ ∪∆, 1).

t

β
z 1

β
z 1

1u unA

A

1t 1s
n

s m

v v1 m

Ω

1

...
...

A mv...1v,u ... u n

Fig. 1. A translation step of a SDTS

An input tree is processed from the root to the leaves, while unprocessed
subtrees are marked by symbol �. Initially, the whole source tree is marked
as unproccessed. If the root of a currently processed subtree has a label from
output alphabet or ε, then it is a leaf and we stop translation in this branch by
removing the symbol �. If we are processing a subtree, whose root is an internal
node, first we reorder and delete children subtrees according to corresponding
rule. Subsequently, if there are some leaf childrens, we reorganize them in such
a way, that the result adheres to the output side of the rule.

Definition 9. A transformation generated by a SDTS (SSDTS, ESDTS) Ω is
a set τ(Ω) = {(ts, tt) | ts ∈ TN (Σ), root(ts) = S, tt ∈ TN (∆), � (ts)⇒∗

Ω tt}.
A SSDTS enables very simple transformations of trees. It does not change

structure of the source tree, it is only possible to delete, add or reorder leaves. A
SDTS enables reordering of subtrees connected to the same node moreover. An
ESDTS is the most powerful modification, unlike SDTS it enables also deleting
of arbitrary subtree in the source tree.

A transformations performed by SSDTS as well as SDTS satisfy the definition
of the type transformation. In the case of ESDTS a problem arises, because if

On classification of XML document transformations 77

we delete a subtree in the source tree, it is not processed anymore. Thus, it is
not possible to check, whether this part of the source tree was correct.

There are several implemented transformation systems that are using SDTS
and its modifications as underlying model. System SynDoc [19] is based on ES-
DTS, and SDTT [5], ICA [21], HST [16] are based on SDTS.

4.2 Tree transformation grammar

A tree transformation grammar is similar to SDTS, however in this case we
associate two groups of production rules. The first group - a source subgrammar
contains some of the source grammar production rules and the second one - a
target subgrammar conatins some of the target grammar production rules. Unlike
in SDTS, nonterminals in the source and target subgrammar must be associated
explicitely. This means, that it is possible to associate also nonterminals with
different names. Additionally, tree-transformation grammars work with as many
levels in the source tree as necessary.

Definition 10. A tree transformation grammar - TTG is a 6-tuple G = (Gs, Gt,

Subs, Subt, PA, SA), where

– Gs = (Ns, Σs, Ps, Ss) and Gt = (Nt, Σt, Pt, St) are the source and target
grammars,

– Subs ⊆ 2Ps and Subt ⊆ 2Pt are sets of source and target subgrammars,
– PA ⊆ Subs × Subt is a set of production group associations,
– SA ⊆ Ns ×Nt is a set of symbol associations.

There are some restrictions put on the source subgrammar. It must contain a
single start nonterminal, and every other nonterminal in the source subgrammar
must be derivable from this start nonterminal. Source subgrammars represent
subtree patterns to be matched against in the source tree; target subgrammars
represent subtrees, that are to be generated as part of the target tree. A target
subgrammar can contain several start nonterminals, thus we can obtain a forest
of target subtrees as a result. Transformation via TTG is performed by process-
ing source tree nodes one by one. For a particular node we look for matching
source subgrammars. If there is some, corresponding target subtrees are con-
structed and links among nodes in source subgrammar and target subgrammar
are marked according to symbol associations. After the whole source tree has
been processed, target subtrees can join to bigger trees according to the marked
symbol associations.

Tree transformation grammars are described in [15]. Authors’ intention was
to define a powerful two-grammar transformations model and, at the same time,
provide simple and natural way to write transformation specification.

Several modifications of tree transformation grammars have been imple-
mented:
• Dual grammar translation scheme (DGTS) - system SSAGS [24].
• Single input production-explicitely qualified (SIPEQ) - system SIPEQ [15].
• TT grammar - system Alchemist [20].

78 Jana Dvořáková

However, semantics of the model remains unclear as no formal definitions
have been introduced in any of the resources mentioned. Now we present defi-
nitions, that we created according to the alghorithm of tree transformation via
TT grammars mentioned in [20].

Definition 11. A configuration of TTG Ω is a pair (ts, Tt), ts ∈ TNs∪{�}(Σs)

and Tt ⊆ {(t, W) | t ∈ TNt
(Nt ∪Σt), W ⊆ 2(path(t)×path(t))}.

A tree ts is the source tree with marked unprocessed nodes. Tt is a set of
target linked trees, i.e., it contains pairs of the form (t, W), where t is a particular
target tree and W is a set of path pairs that we call a set of links of a tree t. We
use the notation Wt as well.

Definition 12. A translation step of TTG Ω is a relation ⇒Ω over configura-
tions defined by (ts, Tt)⇒Ω (t′s, T

′
t)⇐⇒

(1) generating step

– there is such a path ws in a tree ts that ts|ws
=� (A(t1, . . . , tn)),

– t′s = ts[ws ←p A(� (t1), . . . , � (tn))],
– there is such a source subgrammar sg ∈ Subs that tsg (a derivation tree

corresponding to the rules sg) and A(t1, . . . , tn) match,
– there is such a target subgrammar tg ∈ Subt that (sg, tg) ∈ PA and

Ttg = {r1, . . . rm} (derivation trees corresponding to the rules tg). Let us de-
note Ri = (ri, {(w1, wsw2) | (labelri

(w1), labeltsg
(w2)) ∈ SA}), i ∈ {1, . . . , m}.

Then Tt′ = Tt ∪
⋃

1≤i≤m Ri.

(2) connecting step

– t′s = ts,
– there are such R1, R2 ∈ Tt, R1 = (r1, W1), R2 = (r2, W2) that

– root(r2) = A ∈ Nt,
– there is such a path w ∈ path(r1) that r1|w = A,
– there is such a path ws ∈ path(ts) that (w, ws) ∈W1 and (ε, ws) ∈ W2.
Let r3 = r1[w ←p r2], W3 = W1 ∪ {(ww1, w2) | (w1, w2) ∈ W2} a R3 =
(r3, W3). Then Tt = Tt′ −R1 −R2 ∪ R3.

Transformation works in similar way as with SDTS. The source tree is passed
in the top-down manner, while unprocessed nodes are marked by symbol �,
initially the whole source tree is marked.

During the generation step, we first choose such a source subgrammar (pat-
tern), that matches a subtree under currently processed node (Fig. 2). The model
is nondeterministic, i.e., there can be more suitable source subrammars. Then
we add target subtrees (corresponding to the associated target subgrammar) to-
gether with links to the set of linked target trees. Links are created according to
symbol associations (Fig. 3). At last we remove symbol � from current subtree
and again we mark all connected subtrees to indicate they need to be processed.

If we apply connecting step (Fig. 4), we first choose two subtrees r1 and r2

from the set of target linked trees. These trees must satisfy some conditions;

On classification of XML document transformations 79

A

ws ws

patt
...

...
t 1 t n

Fig. 2. Different views of the same source tree

,A(B) SA

ws

...

patt
A

B

Fig. 3. New links created by the generation step

the root of the first one and a leaf of the second one must have the same label
and must be linked to the same node in the source tree. Consequently, the set
of target linked trees is updated so that subtrees r1, r2 are removed and a
new subtree created by connection of r1, r2 is added. Links between this new
subtree and the source tree will be updated as well according to the links in
old subtrees. However, we want to obtain one tree as a result of transformation.
Therefore in following definition of tree transformation via TTG we require the
last configuration to consist of a single element.

Definition 13. A transformation generated by TTG Ω is a set τ(Ω) = {(ts, tt) ⊆
TNs

(Σs)× TNt
(Σt) | (� (ts), ∅)⇒∗

Ω (ts, {(tt, W)})}.

4.3 Descending tree transducer

A descending tree transducer is an automaton, which passes a source tree from
the root to the leaves and performs changes according to the current state, node

80 Jana Dvořáková

c)b)a)

ws ww

A

A

A

Fig. 4. Linking trees by connecting step a) source tree b) target trees before the con-
necting step c) new target tree

and lookeahead. Unlike previous formal models, it works with trees, where labels
of internal nodes are from a ranked alphabet. Basically, ranked alphabet is a pair
(Γ, rank), where Γ is an alphabet and rank : Γ → N is a ranking function, which
assigns positive integer to each symbol in Γ . We usually omit the function rank

in the notation and we say that Γ is a ranked alphabet. If Σ is an alphabet
and Γ a ranked alphabet, then each internal node in a tree over (Γ, Σ) must
have exactly as many children as is the value of the rank of its label. We will
not introduce formal definitions here, all of them can be found in [10] and the
notation is very similar to that one used in previous cases.

A DTT does not represent a model for two-grammars transformations since
it works on higher level of abstraction. However, it is easy to restrict definitions
in such a way, that we obtain DTT, which transforms derivation trees of a given
source grammar into derivation trees of a given target grammar.

A DTT with finite and regular lookahead has been used in the transformation
system SynDoc [17]. This system generates also an XSLT stylesheet as an output
and it is possible to use existing tools for XSLT if further processing is needed.
However, in that case the target correctness is not guaranteed anymore.

4.4 Higher order attribute grammar

Basically, an attribute grammar is a context free grammar, such that each rule
is associated with a set of semantics rules. These rules have a form X.b :=
f(Y1.c1, . . . , Yn.cn), where X , Yi are nonterminals, b, ci are attributes and f is
an n-ary function.

All definitions presented in this section results from [27].

Definition 14. An attribute grammar - AG is a triple AG = (G, A, R), where

• G = (N, Σ, P, S) is a context-free grammar,

On classification of XML document transformations 81

• A =
⋃

X∈N∪Σ AIS(X) is a finite set of attributes, where AIS(X) is a set
of attributes associated with nonterminal X,
• R =

⋃

p∈P R(p) is a finite set of attribute rules. If AIS(X) ∩AIS(Y) 6= 0,
then X = Y . For every occurrence of a nonterminal in a derivation tree of
G there must be exactly one attribute rule applicable for computation of a
value for an attribute a ∈ A. Rules in R(p) have a form α = f(. . . , γ, . . .),
where f is a name of the function, α and γ are attributes of a form X.a.

Definition 15. For each p : X0 → X1 . . . Xn ∈ P we define a set of attribute
evaluation occurrences as AF (p) = {Xi.a | Xi.a = f(. . .) ∈ R(p)}. An attribute
X.a is called a synthetized attribute if there is a rule r : X → χ and X.a ∈ AF (r);
an inherited attribute, if there is a rule q : Y → µXν and X.a ∈ AF (q).

We denote by AS(X) a set of synthetized attributes of a nonterminal X and
by AI(X) a set of inherited attributes of a nonterminal X . After evaluation
process these attributes contain a subtree as a computed value. Thus, unlike in
AG, in HAG the domain of the derivation tree and the domain of attributes
overlap.

A higher-order attribute grammar (HAG) is an extended attribute grammar.
A special type of attribute - nonterminal attribute is introduced.

Definition 16. For each p : X0 → X1 . . .Xn ∈ P a set of nonterminal at-
tributes is defined: NTA(p) = {Xj |Xj := f(. . .) ∈ R(p)}.

An unevaluated nonterminal attribute represents a leaf node of the actual
tree. At this point we call it virtual nonterminal, since there is no subtree con-
nected to it. After the evaluation is performed, a subtree is computed as a value
for nonterminal attribute and consequently it is connected to this attribute (leaf
node). Evaluated nonterminals and common nonterminals we also call instati-
ated nonterminals since they have got an instance, i.e. connected subtree. The
set of instantiated nonterminals represents internal nodes of the actual tree.

A HAG has been implemented in transformation system SIMON [9], which
takes advantage of the power of this model and enables several complex trans-
formations. However, there is one major drawback. System requires a user to
write a complete HAG as a transformation specification and this is usually a
nontrivial task.

For HAG there has been defined formal model - a higher-order attribute
tree transducer [23], which represents some abstraction and therefore it is more
suitable for studying its properties.

4.5 Comparison results

Finally, we briefly introduce results obtained by comparing formal models for
type transformations according to their transformational power. Since we defined
transformations as relations over sets of trees, we can consider them as sets
containing pairs of trees as elements. Thus, we can also compare them as sets.
See Table 1 for comparison results. Symbol N indicates that transformations
of two corresponding formal models are not comparable. More details and all
formal proofs can be found in [6].

82 Jana Dvořáková

Table 1. Comparison results

SDTS ESDTS d-DTT DTT
SDTS (+ (

ESDTS) N N

d-DTT * N ⊆

DTT) N ⊇

SDTS: syntax directed translation schema, ESDTS: extended syntax directed
translation schema, d-DTT: deterministic descending tree transducer, DTT:

descending tree transducer

5 Conclusion and future work

In this paper we introduced a system for classification of XML documents trans-
formations. Our intention was to simplify choosing of appropriate transformation
system according to given requirements for transformation. We defined cate-
gories in bottom-up way, i.e. first we were examining implemented transforma-
tion systems and consequently we abstracted from them to higher-level groups
of transformations sharing similar features.

We were examining in detail formal models used for type transformation.
We defined common framework for these models and we introduced current
results of their mutual comparison. In our future work, we plan to make more
comparisons according to transformational power and complexity as well. We
intend to include also other models, which might appear to be suitable for XML
document transformations.

References

1. A. V. Aho and J. D. Ullman. The theory of parsing, translation and compiling,
Vol. I: Parsing. Prentice-Hall, Inc., Englewood Cliffs, N.J., USA, 1972.

2. D. S. Arnon. Scrimshaw: A language for document queries and transformations.
Electronic Publishing, 6(4), 1993.

3. Berger-Levrault/AIS: Balise Reference Manual, Release 3, 1996.

4. S. Bonhomme. Transformation de documents structurés, une combinaison des ap-
proches explicite et automatique. PhD thesis, University Joseph Fourier - Grenoble,
1998.

5. K. Chiba and M. Kyojima. Document transformation based on syntax-directed
tree translation. Electronic Publishing, 8(1), 1995.

6. J. Dvořáková. Transformácie XML dokumentov. Master thesis, FMFI UK
Bratislava, 2004.

7. Joe English. CoST 2 Reference Manual. Release 3, 1996.
http://www.art.com/cost/manual.html.

8. Exoterica Corporation. OmniMark Programmer’s Guide, 1993.

9. A. Feng and T. Wakayama. SIMON: A grammar-based transformation system for
structured documents. Electronic Publishing, 6(4), 1993.

On classification of XML document transformations 83

10. Z. Füllöp and H. Vogler. Syntax-directed semantics: Formal models based on tree
transducers. Springer-Verlag, 1998.

11. V. Hambálková. Transformácie štruktúrovaných dokumentov. FMFI UK Bratislava,
2000.

12. K. Harbo.CoST Version 0.2 - Copenhagen SGML Tool. Department of Computer
Science and Euromath Center, University of Copenhagen, 1993.

13. ISO - International Organization for Standardization. Information Processing -
Text and Office Systems - Standard Generalized Markup Langugage (SGML), ISO
8879, 1986.

14. ISO - International Organization for Standardization. Information Technology -
Text and Office Systems - Document Style Semantics and Specification Language
(DSSSL), ISO/IEC DIS 10179:1996, 1996.

15. S. Keller, J. A. Perkins, T. F. Payton and S. P. Mardinly. Tree transformation
techniques and experience. Proceedings of the ACM SIGPLAN ’84 Symposium on
Compiler Construction, SIGPLAN Notices, 19(6), Montreal, Canada, 1984.

16. P. Kilelinen, Greger Lindén, H. Manilla and E. Nikunen. A structured document
database system. EP90 - Proceedings of the International Conference on Elec-
tronic Publishing, Document Manipulation and Typography, Gaithersburg, Mary-
land, Cambridge University Press, 1990.

17. E. Kuikka, P. Leinonen and M. Penttonen. Towards automating of document struc-
ture transformation. DocEng ’02, 2002.

18. E. Kuikka and E. Nikunen. Survey of software for structured text. Technical report,
Department of Computer Science and Applied Mathematics, University of Kuopio,
1998.

19. E. Kuikka and M. Penttonen. Transformation of structured documents. Electronic
Publishing, 8(4), 1995.

20. G. Lindén. Structured document transformations. PhD thesis, University of
Helsinki, 1997. ISBN 951-45-7766-3.

21. S. A. Mamrak, C. S. O’Connel and J. Barnes. Integrated Chameleon Architecture.
Prentice Hall, Englewood Cliffs, USA, 1994.

22. MID/Information Logistics Group GmbH. MetaMorphosis Reference Manual,
1995.

23. T. Noll and H. Vogler. The universality of higher-order tree transducers. Theory
of computing systems, 34(1), 2001

24. T. F. Payton. SSAGS: A syntax and semantics analysis and generation system. At-
tribute Grammars. Definitions, Systems and Bibliography. Lecture Notes in Com-
puter Science 323, Springer-Verlag, Berlin, 1988.

25. V. Quint and I. Vatton. GRIF: An interactive system for structured document ma-
nipulation. EP 86 - Proceedings of the International Conference on Text Processin-
gand Document Manipulation, Nottingham, UK, Cambridge University Press, 1986.

26. SAX - Simple API for XML, version 2.0.2, 2004. http://www.saxproject.org/.
27. D. Swierstra and H. Vogt. Higher Order Attribute Grammars. Technical report.

Utrecht University, 1991.
28. W3C. Extensible Markup Language (XML) 1.0 (Third edition), W3C Recommen-

dation, 2004. http://www.w3.org/TR/REC-xml.
29. W3C. XSL Transformations XSLT Version 2.0, W3C Recommendation, 1999.

http://www.w3.org/TR/xslt20/.
30. A. Zhou, Q. Wang, Z. Guo, X. Gong, S., Zhengand H. Wu, J. Xiao, K. Yue and

W. Fan. TREX: DTD-conforming XML to XML transformations. SIGMOD 2003,
2003.

Multimedia information extraction from HTML
product catalogues

Martin Labský1, Pavel Praks2, Vojtěch Svátek1, and Ondřej Šváb1

1Department of Information and Knowledge Engineering, University of Economics,
Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{labsky,svatek,xsvao06}@vse.cz
2Department of Applied Mathematics, VŠB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
pavel.praks@vsb.cz

Multimedia information extraction from HTML

product catalogues

Martin Labský1, Pavel Praks2, Vojtěch Svátek1, Ondřej Šváb1

1 Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{labsky,svatek,xsvao06}@vse.cz
2 Department of Mathematics and Descriptive Geometry,

Department of Applied Mathematics, Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

pavel.praks@vsb.cz

Abstract. We describe a demo application of information extraction
from company websites, focusing on bicycle product offers. A statistical
approach (Hidden Markov Models) is used in combination with different
ways of image classification, including latent semantic analysis of image
collections. Ontological knowledge is used to group the extracted items
into structured objects. The results are stored in an RDF repository and
made available for structured search.

1 Introduction

Tools and techniques for web information extraction (WIE) have recently been
recognised as one of key enablers for semantic web (SW) scaling. In our long-term
project named Rainbow3 we address several intertwined topics that we consider
important for efficient ‘WIE for SW’ applications:

1. Exploitation of multiple information modalities available in web documents

2. Synergy of learning and reuse of ontological information

3. Automated acquisition and labelling of training data for extractor learning

4. Bridging between automated acquisition of SW data and their usage

5. Support for easy design of WIE applications from components.

In this paper, we focus on an ongoing demo application in the domain of
bicycle product offers. Section 2 presents the core method: automated HTML
annotation based on Hidden Markov Models. Section 3 extends the analysis of
HTML code with that of images. Section 4 describes the composition of product
offer instances with the help of a simple ontology. Section 5 outlines the archi-
tecture of the demo application and the subsequent usage of extracted data in
an RDF repository. Finally, section 6 focuses on future work.

3
http://rainbow.vse.cz

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 84–93, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

Multimedia information extraction from HTML product catalogues 85

Fig. 1. Hand-annotated training data

2 Web Page Annotation Using HMMs

For extracting product entries from web catalogues, we built a Hidden Markov
Model (HMM) tagger, which assigns a semantic tag to each token from a docu-
ment. Tokens are either words, formatting tags or images. In our experiments,
we evaluated the HMM performance on a diverse set of web pages, which come
from different web sites and have heterogenous formattings.

We manually annotated a set of 100 HTML documents chosen from the
Google Directory Sports-Cycling-BikeShops-Europe-UK-England. Each document
contains from 1 to 50 bicycle offers, and each offer consists of at least the bicycle
name and price. There are typically 3–4 documents from the same shop in the
data. Annotations for 15 bicycle characteristics were made using SGML tags4.
A sample annotated data is shown in Figure 1.

To represent web documents, we employed extensive pre-processing. Similarly
to [7], we transform each document into XHTML and perform canonicalisation
of XML entities5. Certain HTML tags and tag groups are replaced by their
generalisations6. Since only words and images can be extracted, we dispose of
mark-up blocks that do not directly contain words or images.

HMMs are probabilistic finite state machines, which represent text as a se-
quence of tokens. An HMM consists of states which generate tokens, and of

4 The training data and a demo are available at http://rainbow.vse.cz.
5 This step unifies different ways of writing the same characters in XML.
6 Most tags are only represented using their names, disregarding any attributes. Often-

occuring design patterns, such as add-to-basket buttons, are identified using several
manually authored rules, and replaced by dedicated tokens.

86 Martin Labský, Pavel Praks, Vojtěch Svátek, Ondřej Šváb

Fig. 2. HMM architecture

transitions between these states. States are associated with token generation
probabilities, and transitions with transition probabilities. Both kinds of these
probababilities are estimated from training data. For the purposes of information
extraction, states are typically associated with semantic tags to be extracted. To
annotate a document using a trained HMM, that document is assumed to have
been generated by that HMM. The most probable state sequence is then found
using the Viterbi algorithm [12].

The structure of our HMM is inspired by [6] and is sketched in Figure 2.
Extracted slots are modelled using target states (denoted as T). Each target
state is accompanied by two types of helper states responsible for representing
the slot’s characteristic context – the prefix and suffix states (P and S). Irrelevant
tokens are modelled by a single background state (B). Contrary to [6] and [17],
which use independent HMMs trained for each slot separately, we train a single
composite HMM capable of extracting all slots at once. Our model thus contains
multiple target, prefix and suffix states. This approach, also used in [1], captures
the ordering relations between nearby slots (e.g. product image often follows
its name). We experimented also with other HMM architectures, with results
presented in [16].

3 Impact of Image Classification

For the purpose of extracting product images, we examined the impact of image
information available to the HMM tagger. As a baseline approach, we measured
the tagging performance when no image information was available for tagging.
In this case, all images were represented by the same token and product pictures
could only be distinguished based on the context in which they appeared.

In order to provide our tagger with more information, we built image clas-
sifiers to determine whether the extracted product is depicted in a particular
image. We used the following features for classification: image dimensions, simi-
larity to training product images, and whether there is more than one occurrence
of the same image in the containing document.

Multimedia information extraction from HTML product catalogues 87

3.1 Image dimensions

For our domain, we modelled images of bicycles using a 2-dimensional normal
distribution, only estimated from positive training examples7. The dimensions
x, y of a new image I are first evaluated using the estimated normal density N .
The density value is then normalized to the interval (0,1) using the density’s
maximum value Nmax.

Dim(I) :=
N(x, y)

Nmax

(1)

An image I is then classified as Pos or Neg by comparing its Dim(I) score to
a threshold TDim. This threshold was estimated by minimizing the classification
error rate on a separate heldout set of 150 images.

class(I) =
{

Pos if(Dim(I) ≥ TDim),
Neg otherwise.

(2)

Within our document collection, image dimensions appeared to be the best single
predictor with the error rate of 6.6%. However, this is mainly due to our collec-
tion being limited to relevant product catalogues only. When dealing with more
heterogeneous data, features describing the actual image content will become
necessary.

3.2 Image similarity

We experimented with a latent semantic approach to measuring image similarity,
described in [10] and [11]. This kind of image similarity has been applied to
image retrieval from collections, where the task often is to find the most similar
image to a query. We used this image-to-image similarity measure sim(I, J) to
compute simC(I), the similarity of an image I to a collection of images C. In our
experiments, C contained the training bicycle pictures (positive examples only).
To compute simC(I), we used the K nearest neighbor approach and averaged
the similarities of the K most similar images from the collection.

simC(I) =

∑

K best images J∈C sim(I, J)

K
(3)

Experimentaly, we set K = 20, since lower values of K lead to a decrease in the
similarity’s robustness8 and higher values did not bring further improvement. To
build a classifier, a similarity threshold TSim was estimated on a heldout set in
the same way as for the dimension classifier above. The error rate of the classifier
was 26.7% on our document collection.

7 The positive examples comprise of all bicycle pictures found in the documents, not
only those labeled as parts of bicycle offers. For information extraction, this increases
the role of image context for correct tagging.

8 With low values of K, simC(I) became too sensitive to individual images J with
misleading values of sim(I, J).

88 Martin Labský, Pavel Praks, Vojtěch Svátek, Ondřej Šváb

3.3 Combined classifier

For the combined image classifier, we used the above described dimension score
Dim(I), similarity score Sim(I) and a binary feature indicating whether the
image occurs more than once in the document. We experimented with different
classifiers available in the Weka9 environment, and the best error rate10 of 4.8%
was achieved by the multilayer perceptron algorithm.

Results for all three classifiers are compared in Table 1. All results were mea-
sured using 10-fold cross-validation on a set of 1, 507 occurences of 999 unique
images taken from our training documents. The first two algorithms used ad-
ditional 150 heldout images to estimate their decision thresholds. The cross-
validation splitting was done at the level of documents, so that all images from
a single document were either used for training or for testing.

Table 1. Image classification results

Dimension Similarity Combined

Error rate (%) 6.6 26.7 4.8

3.4 Using Image Information for Extraction

To improve extraction results, we need to communicate the image classifier’s
results to the HMM tagger. Currently we do this simply by substituting each
image occurence in a document by its class. Since these binary decisions would
leave little room for the HMM tagger to fix incorrect classifications, we adapted
the above binary classifiers to classify into 3 classes: Pos, Neg, and Unk. In this
way, the HMM tagger learns to classify the Pos and Neg classes correspondingly,
and the tagging of the Unk class depends more strongly on the context.

To build the ternary versions of the dimension- and similarity-based classi-
fiers, we introduced costs for the classifier’s decisions. Each wrong decision was
penalized by CMiss = 1 and the cost of each Unk decision was CUnk ∈ (0, 1).
We set CUnk manually such that the classifier produced 5-10% of Unk decisions
on the heldout set. While minimizing the sum of these costs on the heldout
set, two thresholds were estimated for both the dimension- and similarity-based
classifiers, delimiting their Neg, Unk and Pos decisions.

For the combined ternary classifier, we achieved the best results with a de-
cision list shown in Table 2. The list combines image occurence count with
the results of the dimension- and similarity-based ternary classifiers, denoted as
class3

Dim and class3
Sim respectively.

We evaluated information extraction results with all three ternary classifiers
and compared the results to the case where no image information was available.

9 http://www.cs.waikato.ac.nz/~ml
10 This error rate comes from 10-fold cross-validation without using heldout data.

Multimedia information extraction from HTML product catalogues 89

Table 2. Decision list for the combined ternary classifier

Order Rule

1 class(I) = Neg if(occurences(I) > 1)
2 class(I) = Pos if(class

3

Dim
(I) = Pos)

3 class(I) = Unk if(class
3

Dim
(I) = Unk)

4 class(I) = Unk if(class
3

Sim
(I) = Pos)

5 class(I) = Neg

The new image information from the combined classifier lead to an increase of
19.1% points in picture precision and also to subtle improvements for other tags.
Improvements in precision and recall for 3 chosen slots (product pictures, names
and prices), measured on a per-token basis, are shown in Table 3 for all three
classifiers.

Table 3. 10-fold cross-validation results for selected tags over 100 documents

Tag Precision Recall F-measure Precision Recall F-measure

No image information Image similarity

Picture 67.8 87.1 76.2 78.5 87.3 82.7
Name 83.7 82.5 83.1 83.9 82.5 83.2
Price 83.7 94.4 88.8 84.0 94.4 88.9

Image Dimensions Combined

Picture 85.6 88.4 87.0 86.9 89.1 88.0
Name 83.8 82.5 83.1 83.8 82.5 83.2
Price 84.0 94.4 88.9 84.0 94.4 88.9

4 Ontology-Based Instance Composition

Semantic web is not about isolated tagged items but about complex and in-
terrelated entities; we thus need to group the labels produced by automated
annotation into instances. We currently use a simple sequential algorithm that
exploits constraints defined in a tiny presentation ontology11 [9], which partly
pertain to the generic domain (bike offers) and partly to the way of presenting
information in web catalogues. Figure 3 shows an experimental presentation on-
tology containing the class ’Bike offer’. The utilized constraints are uniqueness,
multiplicity and optionality of certain properties, the latter two indicated with
the * and ? symbols, respectively12. In addition, ‘sticky’ properties (indicated
with !) are distinguished: as soon as the value of sticky property is discovered

11 Similar to ‘extraction ontologies’ used by Embley [5].
12 Although not shown in the example, we can also use e.g. property value types or

regular expressions.

90 Martin Labský, Pavel Praks, Vojtěch Svátek, Ondřej Šváb

Fig. 3. Bicycle offer presentation ontology

on a page, it is filled to all objects extracted afterwards, until a new value is
discovered for this property.

An annotated item is added to the currently assembled (bike offer) instance
unless it would cause inconsistency; otherwise, the current instance is saved and
a new instance created to accommodate this item and the following ones. De-
spite acceptable performance on error-free, hand-annotated training data, where
the algorithm correctly groups about 90% of names and prices, this ‘baseline’
approach achieves very poor results on automatically annotated data: on aver-
age, less than 50% of corresponding annotations are grouped properly, often for
trivial reasons. The most critical problems are connected with missing or extra
annotations, multiple different references to a single slot, and with transposed
HTML tables.

5 Result Transformation, Storage And Retrieval

All components developed within the Rainbow project are wrapped as web ser-
vices. The WIE component itself is currently being called by a simple control
routine (written in Java), which also optionally calls other analysis tools: in
the bicycle application, we so far experimented with URL-based navigation over
the website, extraction of the content of selected META tags, and extraction
of ‘company profile sentences’ from free text13. The results are transformed to
RDF (with respect to a ‘bicycle-offer RDFS ontology’) and stored in a Sesame
[2] repository. An end-user search interface to this repository14 is shown in Fig. 4.
It relies on a collection of query templates expressed in SeRQL (the native query
language of Sesame) and enables a simple form of navigational retrieval [16].

13 These three approaches to website analysis, implemented independent of the bicycle
demo application, are evaluated in [13].

14 Available at http://rainbow.vse.cz:8000/sesame.

Multimedia information extraction from HTML product catalogues 91

Fig. 4. End-user search interface

6 Future Work

Most urgently, we need to replace the ‘toy’ implementation of ontology-based
instance composition with a version reasonably robust on automatically anno-
tated data. For some of the layout-oriented problems mentioned in section 4,
partial solutions recently suggested in IE research (e.g. [3, 5]) could be reused.
We also consider introducing HMMs even to this phase of extraction; a modified
version of Viterbi algorithm supporting domain constraints (such as those in our
presentation ontology) has already been described in [1]. Another aspect worth
investigation is the possibility of (semi-)automatic construction of presentation
ontologies from the corresponding domain ontologies.

A critical bottleneck of ML-based IE methods (in particular of statistical
ones) is the volume of labelled training data required. In our experiments with
product catalogues, we noticed that the tagger often classifies most product en-
tries correctly but misses a few product names that are very different from the
training data. We developed a simple symbolic algorithm that identifies similar
structural patterns in a document. For example, the HTML tag sequence <td>
<a>
 </td> with arbitrary words in between ap-
pears 34 times in one of our training documents: the tagger successfully anno-
tated 28 product names contained in these patterns between and
,
but missed the remaining 6. In such cases, we could collect the remaining prod-
uct names and use them to enrich the model’s training data. By learning novel
product names from these ‘easy’ pages, the model will learn to also recognise

92 Martin Labský, Pavel Praks, Vojtěch Svátek, Ondřej Šváb

them in less structured documents15. We also plan to bootstrap the method with
data picked from public resources related to product offering, following up with
our earlier experiments with Open Directory headings and references [8].

Another important task is to replace hard-coded control routines with semi-
automatically constructed, implementation-independent application models. A
knowledge modelling framework has already been introduced for this purpose
[14]; currently we examine the adaptability of a PSM-based semantic web-service
configuration technique in connection with this framework [15].

Eventually, we plan to associate our efforts with the popular Armadillo
project [3], with which we share most of our abovementioned research interests.

The research is partially supported by grant no.201/03/1318 of the Grant
Agency of the Czech Republic, “Intelligent analysis of the WWW content and
structure”.

References

1. Borkar V., Deshmukh K., Sarawagi S.: Automatic segmentation of text into struc-
tured records. In: SIGMOD Conference, 2001.

2. Broekstra J., Kampman A., van Harmelen F.: Sesame: An Architecture for Storing
and Querying RDF and RDF Schema. In: Proc. ISWC 2002, Springer LNCS no.
2342.

3. Ciravegna, F., Chapman, S., Dingli, A., Wilks, Y.: Learning to Harvest Information
for the Semantic Web. In: ESWS-04, Heraklion, Springer LNCS 2004.

4. Dingli A., Ciravegna F., Guthrie D., Wilks Y.: Mining Web Sites Using Unsupervised
Adaptive Information Extraction. In: EACL, 2003.

5. Embley, D.W., Tao, C., Liddle, S.W.: Automatically extracting ontologically speci-
fied data from HTML tables with unknown structure. In: ER2002, Tampere 2002,
322-337.

6. Freitag D., McCallum A.: Information extraction with HMMs and shrinkage. In:
Proceedings of the AAAI-99 Workshop on Machine Learning for IE, 1999.

7. Grover C., McDonald S., Gearailt D., Karkaletsisy V., Farmakiotouy D., Samaritak-
isy G., Petasis G., Pazienza M., Vindigni M., Vichotz F., Wolinskiz F.: Multilingual
XML-Based Named Entity Recognition for E-Retail Domains. In: LREC Confer-
ence, Las Palmas, 2002.

8. Kavalec, M., Svátek, V.: Information Extraction and Ontology Learning Guided by
Web Directory. In: ECAI Workshop on NLP and ML for ontology engineering. Lyon
2002.

9. Labský, M., Svátek, V., Šváb, O.: Types and Roles of Ontologies in Web Information
Extraction. In: ECML/PKDD04 Workshop on Knowledge Discovery and Ontologies,
Pisa 2004.

10. Praks P., Dvorský J., Snášel V.: Latent semantic indexing for image retrieval sys-
tems. In: Proceedings of the SIAM Conference on Applied Linear Algebra (LA03),
Williamsburg, USA, The College of William and Mary, 2003.

11. Praks P., Machala L., Snášel V.: Iris Recognition Using the SVD-Free Latent Se-
mantic Indexing. In: MDM/KDD 2004 - Fifth International Workshop on Multime-
dia Data Mining, Seattle, USA, 2004.

15 Similar bootstrapping strategies are shown in [4].

Multimedia information extraction from HTML product catalogues 93

12. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. In: Proceedings of the IEEE, 77(2), 1989.

13. Svátek V., Berka, P., Kavalec, M., Kosek, J., Vávra, V.: Discovering Company De-
scriptions on the Web by Multiway Analysis. In: Intelligent Information Processing
and Web Mining, IIPWM’03., Springer Verlag, 2003.

14. Svátek, V., Labský, M., Vacura, M.: Knowledge Modelling for Deductive Web
Mining. In: Proc. EKAW 2004, Springer Verlag, LNCS, 2004.

15. Svátek, V., ten Teije, A., Vacura, M.: Web Service Composition for Deductive
Web Mining: A Knowledge Modelling Approach. In: Proc. Znalosti 2005, VSB-TU
Ostrava, to appear 2005.

16. Šváb, O., Labský, M., Svátek, V.: RDF-Based Retrieval of Information Extracted
from Web Product Catalogues. In: SIGIR’04 Semantic Web Workshop, Sheffield.

17. Valarakos A., Sigletos G., Karkaletsis V., Paliouras G.: A Methodology for Seman-
tically Annotating a Corpus Using a Domain Ontology and Machine Learning. In:
RANLP Conference, Borovets, 2003.

Text mining tool for ontology engineering based
on use of product taxonomy and web directory

Jan Nemrava and Vojtěch Svátek

Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{nemrava, svatek}@vse.cz

Text mining tool for ontology engineering based on use
of product taxonomy and web directory

Jan Nemrava and Vojtěch Svátek

Department of Information and Knowledge Engineering,
University of Economics, Prague, W.Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{nemrava, svatek}@vse.cz

Abstract. This paper presents our attempt to build a text mining tool for col-
lecting specific words – verbs in our case – that usually occur together with
particular product category as support for ontology designers. As the ontologies
are headstone for the success of the semantic web, our effort is focused on
building small and specialized ontologies concerning one product category and
describing its frequent relations in common text. We describe the way we use
web directories to obtain suitable information about the products from
UNSPSC taxonomy and we propose the method how the extracted information
could be further processed.

1 Introduction

Information Extraction (IE) and Ontology (OL) learning are frequently discussed
issues in the field of Semantic Web. The problems of information extraction using
hand-crafted patterns have been addressed in many papers and it is obvious that the
most promising way is automated or semi-automated ontology-based extraction of
information. Since the results of IE from rigidly structured and semi-structured texts
are already quite satisfying, the problems remain in field of unstructured free text
processing. Large amount of knowledge-sparse text with full linguistic analysis
would be too demanding. Shallow linguistic methods typically rely on POS tagging
and/or shallow parsing. In our work we focus on finding verbs as simple POS cate-
gory (in [4] called “indicator terms”) that usually occur with some product selected
from The United Nations Standard Products and Services Code1 (UNSPSC) product
catalogue so that we can:

- construct ontologies containing relations labeled with extracted verbs
- use these verbs for extracting further product categories from web pages
Web directory hierarchies (e.g. DMOZ2) are sometimes mistaken for ontologies;

however, as already observed by Uschold [11], they are rarely valid taxonomies. It is
easy to see that subheadings are often not specializations of headings; some of them
are even not concepts (names of entities) but properties that implicitly restrict the

1 http://www.unspsc.org
2 http://www.dmoz.org

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 94–102, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

Text mining tool for ontology engineering . . . 95

extension of a preceding concept in the hierarchy. Consider for example
.../Industries/Construction and Maintenance/Materials and Supplies/
/Masonry_and_Stone/Natural Stone/International Sources/Mexico.
Semantic interpretation of a sample of DMOZ paths revealed that:

– Terms in the headings belong to quite a small set of classes, such as ‘Object’ (i.e.
product such as ‘Car’), ‘Subject’ (e.g. ‘Manufacturer’ or ‘Dealer’), ‘Domain’ (of
competence of company, such as ‘Transport’ or ‘Insurance’), ‘Location’ (e.g.
‘Mexico’) etc.
– Surface ‘parent-child’ arrangement of headings belonging to particular classes
corresponds (with some ambiguity) to ‘deep’ ontological relations.
The idea of closed loop between IE and OL bootstrapped with web directory head-

ings was first formulated in [4]: by matching headings (mostly corresponding to ge-
neric names of products, services, or domains of competence of companies) with full
texts of pages, we can obtain content of these fulltext and use it for data extraction.

The reason why we use UNSPSC is that we would like to join this taxonomy and
list of products with content of company websites to gain valuable information about
verbs that usually occur in one sentence with some product category from the taxon-
omy. We build a tool that collects these verbs from given web pages. Presented text
mining tool is based on combination of catalogue and fulltext search engine. Our
approach is exploits redundancy of data on large data repositories like World Wide
Web. We are exploiting the knowledge stored in hand classified web directories like
DMOZ and we use their ability to provide web sites relevant to term we have chosen.
The problem that had been already discussed in [10] is that the first website page does
mostly does not contain much or even any text. When it does, it hardly ever describes
the product or the offered services. This led us to use the fulltext search engines with
restriction to particular website to ensure that we discover all term occurrences in
content of whole company’s website. As UNSPSC is freely available in standard
ontology format from Protégé3 website, it contains 16.000 unique products and has
unambiguous structure, it is suitable for use in this field.

In this paper, we first describe the reason why UNSPSC was chosen, and why we
use directories as source for our data. In next section we introduce our method to
identify verbs related to products and in third section we describe experiments and the
results. At the end of the paper related work and our future plans are discussed.

2 Proposed method description

2.1 Finding UNSPSC leaves in DMOZ directory

As suggested in [4] use of UNSPSC could be good technique how to overcome web
directories problem with their structure and overlapping categories which describe
more products. UNSPSC contain 16 000 specialized terms each describing particular

3 http://protege.stanford.edu/

96 Jan Nemrava, Vojtěch Svátek

product category which can hardly be further divided. On the other hand this raise
problem that UNSPSC tree leaves (product categories) varies from the directory
headings in commonly used directory structure including DMOZ and Google direc-
tory. At current time there aren’t any tools to automate the process of assigning right
UNSPSC category to relevant DMOZ category so it must be done manually by
choosing product from taxonomy and then finding appropriate category in directory.
There are either a lot of categories describing our term or none. In the first case we
focus on Business branch where we expect that the manufacturers and the company
offering our products will be stated. The latter case – where no category is found – is
worse and we have to find similar category, or find similar product. These two issues
disallow this part of our work to be done automatically. In our test we found 7 nodes
corresponding to the same number of products from UNSPSC from “Material han-
dling” field.

2.2 Obtaining verbs from relevant web sites

We take advantage of human-classified web page links stored in web directories. As
stated above their structure is not always valid taxonomy. Subheadings are often not
specialization of headings; some of them are even not concepts (names of entities) but
properties that implicitly restrict the extension of a preceding concept in the hierar-
chy. This is reason why we make use of UNSPSC classification in our paper. We
would like to obtain so called „indicator verbs” that characterize particular term
(product category in our case) in UNSPSC. Particular terms will be then generalized
and may mine verbs that are indicative for the upper level of these terms. The trial
was only made on one category and several terms, which limits the representativeness
of results. Only several common verbs were obtained and they had to be classified
manually, as we don’t have any other categories to be compared with results from
this. Next paragraph describes the text mining tool that collects data from selected
directory category.

Text mining tool for ontology engineering . . . 97

Table 1. Task sequence decomposition

1) Input: URL of DMOZ directory containing companies that manufacture desired product.
 Output: List of URL of companies.
2) Input: URL of company website
 Output: List of web pages containing the target term.
3) Input: Web page containing the term
 Output: File with extracted sentences containing the term
4) Input: Sentence with term.
 Output: Extracted verb.

Table 1 depicts sub-tasks of the tool. The input data for this tool are the URL of di-

rectory in DMOZ containing links relevant to chosen term and the product category
chosen from UNSPSC. When we have chosen the right category the script can be run.
The first part uses link extractor to obtain all company’s web sites URLs. The list of
extracted links is stored in file for further processing. Every URL from the list is then
inserted into Yahoo Search Engine with the term we are currently exploiting and the
parameter “site” is added. This ensures that the particular term is only searched on the
selected web site. This process is repeated until all URLs from the list have been
processed. We only store first 10 links from every domain, but it is only matter of
setting of script and here we see a possibility of extracting more data. Up to 100 links
from every company URL can be stored.

Now we have several hundreds links (depending on number of links on list) to
sites where our desired term occurs in the page full text. Next part task is to extract
every sentence from this set of links where the terms occur. The task is carried out by
means of regular expressions and finding occurrence of the term in set of documents.
As the sentences are discovered and saved into file we need to carry out some syntac-
tical analysis to discriminate verbs from other lexical units. It is done by Adwait Rat-
naparkhi's Java based Maximum Entropy POS Tagger (MXPOST) [6]. The extracted
verbs are then compared with each other to find similar verbs, and number of occur-
rences is counted. Using WordNet4 database and its ability to discover word stem
from any word form we assure that neither text parser nor MxPost made mistake by
during assigning verbs. If mistakes were made WordNet discovers them and it also
provides lemma for each word inserted, which makes storing of verbs much easier.
The Table 2 lists first 10 verbs given by our script for term ”hoists” where word in
the 9th row (i.e. “products”) was incorrectly labeled by MxPost tagger as verb.

4 http://wordnet.princeton.edu/

98 Jan Nemrava, Vojtěch Svátek

Table 2. Example of extracted verbs and their lemmas

word lemma next occurrences

include include
include, includes, includes, includes, includes, includes, include, include,
include, include, included, included, include, include, include, include, in-
clude, included, include

announced announce announced, announced, announced, announced, announce, announce, an-
nounced, announced, announced, announced

are be

are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are,
are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are,
are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are,
are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are,
are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are, are,
are, are, are, are, are, are, are, are, are, are, are, are, are

providing provide providing, providing, providing, providing, providing, providing, providing

feature feature featured, features, features, features, features, features, features, features,
features, feature, feature

following follow following, following, following, following, following, following, following

leading lead leading, leading, leading, leading, leading, leading, leading, leading, leading

products products is
not a verb products, products, products, products, products, products

including include including, including, including, including, including, including

We store all extracted verbs as matrix in relational database, where the discovered

verbs represents rows and the desired terms represents columns. The intersection of
row and column is the number of verb occurrences in all web pages of the directory
category. We can use these sets of verbs and number of their occurrences for further
examination on how the verbs characterize some broader term and if a small ontology
could be build for every term. The goal of effort is to build separate lists of verbs
such that some only characterize specific product types, while some other character-
ize whole product areas. We started with node Handling materials and products from
this category.

3 Experiments

In extracting selected information we currently face the problem of how to set proper
amount of web sites to be analyzed and what is the right amount of words taken in
surroundings of the word. As stated above in this particular experiment, 10 web pages
from one company website and one sentence from each web page containing exam-
ined word is taken. Our research shown that this can be sufficient amount of data for
extraction of verbs for some common product types, but other product types from the

Text mining tool for ontology engineering . . . 99

same category of UNSPSC suffer from lack of data for extraction because they don't
have appropriate category (node) in DMOZ.

There are two possible ways to overcome this problem. The first one is to concede
the given constrains and allow our script to crawl more pages from one website and
also allow to extract more sentences from one page. The second approach we have on
mind is take advantage of some news resources like Google News service as there
might appear verbs that characterize some product category. But from previous ex-
perience [3] we know, that the language used in non-official texts could contain mis-
guiding verbs that have loose connection to term’s denotation because of author’s
will to attract the readers attention by lot of ambiguous verbs. What is necessary is to
restrict the domain of search, e.g. technical innovation, or technical news.

Using the above described tool we have built a database containing 303 verbs for 7
product categories from handling material category. These are only words that have
appropriate category in DMOZ and therefore our approach could be used for their
extraction. These verbs occurred 7300 times near the selected terms.

Our goal is to find some method that would enable us to categorize verbs as either:
- common for most products.
- characterizing one branch of products
- specific for small group of products, or even only one product.
 Even from seven product categories – as expected – some verbs are obvious to be

entirely neutral and do not characterize the products at all. According to three meth-
ods described later, verbs be, have, provide and use are common for all sentences
describing any product. Then we have verbs describing activities connected with
manufacturing of any types of products e.g. design, require, offer, make, contact,
manufacture, develop, supply, etc. More specific for our branch might be verbs de-
scribing activities related to manipulating with material. They are handle, lift, install
and move.

We experimented with three different measures that could separate specific verbs
from more general ones. First and second are normalizations of frequencies to elimi-
nate the influence of very frequent verbs. Normalization based on proportions of
product categories in collection is the first, Croft’s normalization using elimination
of high-frequency terms with a specific constant is the second and TF/IDF [8] which
relies on indirect relation between verb occurrences in its importance for product
category is the last. We also tried Lift measure [2] but it didn’t provide satisfactory
results for aggregate values. We plan to use it for individual product category in fu-
ture as it measures how many times more often occurs one verb with one term to-
gether than expected if they where statistically independent.

We tried these three methods to class verbs to their corresponding groups of verbs.
All methods provided quite similar results. The first is normalization described by
formula (1), where Fij is normalized frequency, fij is the frequency of verb j in prod-
uct category i, Vtj is sum of all occurrences of product category i in collection and V
is total number of collected verbs. Then Vtj / V represents how many per cent has
product category i in collection. We recalculate whole matrix to get numbers ranging
from 0 to 43 representing the normalized frequencies showing that the verbs with
high value (30-43 in our case) are independent on the product category and thus they
can be considered as common one. Verbs with values from 10 to 30 are not so often

100 Jan Nemrava, Vojtěch Svátek

and they could be used as branch descriptors. The rest are with frequency lower than
10 are out of our interest for this moment.

Fij = fij * (Vtj / V) . (1)

Croft’s normalization (2) moderates the effect of high-frequency verbs, where cfij

is Croft's normalized frequency, fij is the frequency of verb j in product category i, mi
is the maximum frequency of any verb in product category i, K is a constant between
0 and 1 that is adjusted for the collection. K should be set to higher value (higher than
0.5) for collections with short documents. We used 0,3 as there are no different be-
tween 0.3 and 0.5 in our table. With this formula we get sum values for every verb
ranging from 2.1 (7 product category × 0.3 for zero occurrences) for no occurrences
of verb in our database to 8.58 for the most often verbs. Verbs with number above 5
normalized occurrences are significant for us as the common indicator while verbs
between 3 and 5 normalized occurrences could be taken as the products representing
verbs. The rest, with 3 and lower occurrences is for us as in previous method uninter-
esting.

cf = K + (1 - K) * fij / mij . (2)

TF/IDF (term frequency / inverse document frequency) (3), where wij is a weight of

verb in product category i, fij is the frequency of verb j in product category i, N is
number of all verbs in collection and n is sum of verb j occurring in all product cate-
gories. TF/IDF is technique that gives verb a high rank in a document if the verb
appears frequently in a document or the verb does not appear frequently in other
product categories. In other words a verb that occurs in a few product categories is
likely to be a better discriminator than a verb that appears in most or all categories.
As a result in this test we got values from 0 to 1350. Where as usual, the highest val-
ues between 1000 and 1350 are verbs that occur independently on selected product
category and we consider them as common verbs. We are much more interested in
verbs with value starting around 300 and ending at 1000. As stated above, these could
be used as identifiers of the product category.

wij = fij * log2(N / n) (3)

In our trial we only examined 7 product categories from one UNSPSC node and

hence we are not able to classify verbs into four categories as we suggested in part 1.
We only classified them on common and specialized verbs. The first 15 results with
values from each of described method are shown in Table 3.

The reason why this approach cannot be automatically run are mainly the non-
corresponding items from product taxonomy to categories in widely-spread product
catalogues. Our plans and intentions for the development of this tool are stated in
future work section.

Text mining tool for ontology engineering . . . 101

Table 3. Comparison of three methods

 lemma Per cent lemma croft lemma TFIDF
1 have 43,01 have 8,58 have 1 318,40
2 provide 40,38 provide 7,41 provide 1 164,76
3 design 39,36 design 7,14 design 1 119,10
4 use 37,29 use 6,38 use 1 028,17
5 lift 26,47 require 5,32 require 802,81
6 require 26,43 handle 4,70 lift 703,11
7 handle 19,81 lift 4,70 handle 676,10
8 mount 17,75 offer 4,68 offer 648,62
9 operate 17,66 allow 4,31 allow 596,96

10 truck 17,61 include 4,30 contact 587,38
11 allow 17,25 please 4,29 move 582,57
12 contact 16,37 make 4,18 please 582,57
13 offer 15,99 contact 4,15 include 572,89
14 meet 15,91 need 4,06 meet 538,52
15 include 15,49 install 4,06 make 538,52

4 Related Work

The idea of combination information extraction with ontology learning has been de-
scribed by Maedche in [5]. The idea of using identified words to extract more words
was in [7] called mutual bootstrapping. This paper follows up with work [3] as it
brought to this field use of universal product taxonomy and web directories and
firstly suggested UNSPSC as possible way to obtain relevant data from given branch
for a given product category. While Brin [1] uses fulltext search engines to obtain
data from arbitrary sources we only use search engines for obtaining full text from the
websites we have previously identified by another method, because our data are less
structured and can be mistaken easily by ambiguous meanings of terms.

5 Future Work

As described in this paper, there are currently some limitations of this approach; they
are mainly caused by lack of data to be mined from websites for some specialized
terms. We proposed some techniques how to overcome these limitations. One of them
is relaxing restrictions of fulltext search engines and the second is searching in all
subdirectories for given terms in all whole DMOZ branch tree structure. All our plans
for future stem from our effort to obtain as much data as possible and also better
automation of whole process. We recently discovered a tool that could help us to use
fulltext search on selected nodes from DMOZ web directory. As soon as we obtain
verbs for more branches we could try to classify the verbs into four categories as

102 Jan Nemrava, Vojtěch Svátek

proposed in section 3 and use them for creating ontologies with relations labeled with
extracted verbs.

6 Acknowledgements

The authors would like to thank to Martin Labský and Martin Kavalec for their com-
ments and help.

The research has been partially supported by the grant no. 201/03/1318 of the
Grant Agency of the Czech Republic „Intelligent analysis of the WWW content and
structure“.

7 References

1. Brin,S.: Extracting Patterns and Relations from the World Wide Web. In WebDB Work-
shop at EDBT’98

2. Brin S, Motwani R., Ullman J, Tsur S.: Dynamic itemset counting and implication rules for
market basket data. In SIGMOD 1997, Proceedings ACM SIGMOD International Confer-
ence on Management of Data, pages 255-264, Tucson, Arizona, USA, May 1997.

3. Kavalec M., Maedche A., Svátek V.: Discovery of Lexical Entries for Non-Taxonomic
Relations in Ontology Learning. In: SOFSEM – Theory and Practice of Computer Science,
Springer LNCS 2932, 2004

4. Kavalec M., Svátek V.: Information Extraction and Ontology Learning Guided by Web
Directory. In: ECAI Workshop on NLP and ML for Ontology engineering (OLT-02).
Lyon, 2002.

5. Maedche A., Neumann G., Staab S.: Bootstrapping an Ontology Based Information Extrac-
tion System. Studies in Fuzziness and Soft Computing, editor Kacprzyk J., Intelligent ex-
ploration of the web, Springer 2002/01/01

6. Ratnaparkhi A.: Adwait Ratnaparkhi's Research Interests, [online],
http://www.cis.upenn.edu/~adwait/statnlp.html

7. Riloff E., Jones R..: Learning Dictionaries for Information Extraction by Mulit-Level Boot-
strapping, Proceedings of the Sixteenth National Conference on Artificial Intelligence, P
474-479, 1999

8. Salton G., Buckley C.: Term-weighting approaches in automatic text retrieval. Information
Processing and Management, 24 (5):513--523, 1988.

9. Salton, G. and Buckley, C. (1988d). : Term-weighting approaches in automatic text re-
trieval. Information Processing and Management, 24:513-523.

10. Svátek V., Berka P., Kavalec M., Kosek J., Vávra V.: Discovering company descriptions
on the web by multiway analysis. In: New Trends in Intelligent Information Processing and
Web Mining (IIPWM'03), Zakopane 2003. Springer-Verlag, 'Advances in Soft Computing'
series, 2003

11. Uschold M. , Jasper R.: A Framework for Understanding and Classifying Ontology Appli-
cations. In: Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving
Methods: Lessons Learned and Future Trends.

Relational Data Mining and GUHA

Tomáš Karban

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

tomas.karban@matfyz.cz

Relational Data Mining and GUHA
Tomáš Karban

Department of Software Engineering, Faculty of Mathematics and Physics, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

tomas.karban@matfyz.cz

Abstract. This paper presents an extension of GUHA method for relational
data mining of association rules. Because ILP methods are well established in
the area of relational data mining, a feature comparison with GUHA is
presented. Both methods suffer from the explosion of the hypotheses space.
This paper shows heuristic approach for GUHA method to deal with it, as well
as other methods helping with the relational data mining experience.

1 Introduction
Most data mining methods have been developed for data in the traditional single-table
form: rows represent observations (objects) and columns represent variables (proper-
ties). However, real-world data are usually stored in relational databases and consist
of many related tables. Data preparation methods then convert data stored in an
arbitrary form to a single-table representation (e.g. through joins and aggregation).
This step simplifies the data inherently and it is manually driven, so its success
depends on the creativity of a KDD person.

Relational data mining studies methods for KDD that can use more than one data
table directly, without transforming the data into a single table first and then looking
for patterns in such an engineered table. In many scenarios, leaving the data in rela-
tional form can save a lot of information that can be later expressed in the form of
relational patterns. Single-table patterns are simply less expressive. Relational data
mining techniques have been mainly developed within the area of inductive logic
programming (ILP). ILP was initially concerned with the synthesis of logic programs
from examples and background knowledge. Recent development has expanded ILP to
consider more data mining tasks, such as classification or association analysis.

On the other hand, GUHA method is an approach of generating and verifying the
hypotheses. Deep theoretical background is in [1]. For example, GUHA procedure
4ft-Miner mines for association rules from a single table, while other GUHA proce-
dures (see [4, 7, 8]) mine for other types of patterns. Its main principle is to generate
all possible hypotheses based on user task setting, verify them and output the valid
ones. In a typical effective implementation, it loads the database into bit strings (i.e.
bitmap indexes), and verifies the hypotheses by processing the bit strings.

We can quite naturally extend this approach, so it allows us to search for associa-
tion rules generalized to more than one data table. We can expect to find patterns that
are more complex. Unfortunately, the hypotheses space grows rapidly and the results
(valid hypotheses) are more numerous. A new system called Rel-Miner covering
methods and ideas presented in this paper is under development.

This paper presents the extension of GUHA method for relational data mining and
compares this approach with ILP, which is well established in this area. In the section
2 of this paper, we present the GUHA method, starting from the single-table case and

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 103–112, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

104 Tomáš Karban

extending it to relational case. The section 3 covers the ILP approach (mainly rela-
tional association rules), compares it to the GUHA and puts both concepts to a
universal frame. In the fourth section, we provide more insight to heuristics and
optimizations for relational version of GUHA. Section 5 is the conclusion.

2 GUHA Method
2.1 Single-Table Association Rules
An association rule is commonly understood as an expression of the form of X→Y,
where X and Y are sets of items. The intuitive meaning is that transactions (e.g.
supermarket baskets) containing set X of items tend to contain set Y of items as well.
Two measures of intensity of association rule are used, confidence and support. The
goal is to find all association rules of the form X→Y such that the support and confi-
dence of X→Y are above the user-defined thresholds minsup and minconf. The basic
algorithm for mining of association rules is APRIORI [2].

The papers [6, 7] draw an attention to an alternative approach for mining associa-
tion rules based on representation of each possible value of each attribute by a single
string of bits. The association rules have the form ϕ ψ≈ and it is possible to mine for
conditional association rules in the form /ϕ ψ χ≈ as well. Here ϕ, ψ and χ are
conjunctions of boolean attributes automatically derived from many-valued attributes
in various ways (called antecedent, succedent and condition respectively). The sym-
bol ≈ is called a 4ft-quantifier. The association rule ϕ ψ≈ means that boolean
attributes ϕ and ψ are associated in the sense of the 4ft-quantifier ≈. A conditional
association rule /ϕ ψ χ≈ means that ϕ and ψ are associated (in the sense of ≈) if the
condition given by χ is satisfied (i.e. associated on a subset of data specified by χ).

M ψ ¬ψ
ϕ a b r
¬ϕ c d s

 k l n

Fig. 1. A contingency table of the association rule ϕ ψ≈ in data matrix M

The 4ft-quantifier is formally a boolean condition concerning the four-fold contin-
gency table with frequencies a, b, c, d. For every quantifier, we can also use a natural
value of hypothesis. It is a real number based on the same expression. See the example
below.

Among usual 4ft-quantifiers there is a founded implication, which is very similar
to “classic” association rule meaning with parameters minsup and minconf (in the
sense [2]). We define it by the following expression over the four-fold table:

a p a Base
a b

≥ ∧ ≥
+

.

There are parameters 0 1p< ≤ and 0Base ≥ . You can interpret a hypothesis
;p Baseϕ ψ⇒ as “ϕ implies ψ on the level of 100p percent and there are at least Base

objects satisfying both ϕ and ψ”. The natural value of this hypothesis is the expres-
sion a

a b+ .

Relational Data Mining and GUHA 105

Other quantifiers describe double founded implication, founded equivalence, above
average occurrence or tests of statistical hypotheses (chi-square test of independence,
lower critical implication, etc.). You can find more information about this approach in
[6, 7]. The project LISp-Miner [4, 5] (namely the 4ft-Miner procedure) is the imple-
mentation of this method.

Let us give an example of the association rule with founded implication quantifier:

Smoking(> 20 cigs.) & PhysicalActivity(high) ⇒85% RespirationTroubles(yes)

We can read in plain English that 85% of observed patients, who smoke daily more
than 20 cigarettes and have a high physical activity, suffer from respiration troubles.

The basic principle behind an effective implementation is usage of the bit strings.
We start with a bit string of heavy smokers and bit string of people with high physical
activity (these are created directly from database values). We construct the antecedent
by ANDing the two bit strings (bit by bit). Note that all bit strings have the same
length, which is the total number of patients (objects of this particular database). The
succedent is simply a bit string of people with respiration troubles. We compute the
frequencies of the four-fold contingency table as the number of bits 1 in the following
bit strings: (antecedent & succedent), (antecedent & ¬succedent), (¬antecedent &
succedent) and finally (¬antecedent & ¬succedent).

Note that if the database contains objects with missing information (i.e. some null
values), we must also maintain a bit string of these null values (as if this was another
category) and use them for computation. More details about missing information
handling are out of scope of this paper.

In general, we create bit strings out of every category (i.e. possible value) of every
attribute. Then we combine some of these bit strings by very fast bitwise operations
(namely AND, OR and NOT) into bit strings of antecedent, succedent and possibly
condition. After that, we compute a contingency table by counting the number of bits
with value 1 and check the value of quantifier. We do this for every hypothesis in the
whole hypotheses space specified by the user as a task setting.

2.2 Relational Association Rules
At the beginning, it is important to note that even when we have more than one data
table, we still consider one data table as “the main” which stores the basic information
about every single object (the same as before). Additionally, we take additional tables
with the 1:N relation to the main table. This situation is in database world usually
called “master-detail”.

Let us start with a motivation example (see also [6]). We have a database of bank
clients. The first table stores basic client information like age, gender, marital status,
number of children, and the quality (status) of a running loan. The second table stores
money transactions on clients’ accounts. Every transaction has a source and destina-
tion account number and amount.

106 Tomáš Karban

Fig. 2. A simple database schema with 1:N relation

The goal is to get relational association rules that will tell us interesting patterns
about the loan quality with respect to both mentioned data tables. The target could be:

MaritalStatus(divorced) & Children(3) & SingleIncome(yes) & AvgIncome(< 1500) ⇒76% LoanQuality(bad)

In plain English, observed divorced people with single income less than $1500 a
month and three children have the probability of 76% of having bad quality loan
(troubles with repayments). Here, we used the attributes MaritalStatus and Children directly
from master data table. Attributes SingleIncome and AvgIncome were derived from the
transactions in the following way:

TransactionAmount(> 500) ⇒93% SourceAccount(acc345) / Client(ABC)
AVG(SELECT SUM(TransactionAmount) WHERE (TransactionAmount > 0) GROUP BY YearMonth)

We call the attributes derived from detail tables virtual. The former attribute is in
the form of a founded implication on transaction data, the account number acc345 is a
fixed constant for the client ABC. The attribute value for this specific client is 93%.
This value is then “virtually added” to the master data table and can be discretized
(e.g. yes = more than 90%) to a boolean attribute SingleIncome.

The attribute AvgIncome is a kind of SQL aggregation; for every client it counts the
monthly average of the sum of all income transactions.

2.3 Adaptation for Relational Data Mining
In the single-table case, the whole KDD process can be described very easily and
precisely by the CRISP-DM methodology [3]. It has separate steps of data preparation
and modeling (i.e. data mining). In the data preparation step, data must be discretized
before they are used in modeling step. This stays the same even for the relational
case; unfortunately, the discretization is needed in the modeling step as well. In the
previous example, we have seen the conversion of the strength of implication (93%)
into a boolean value, as well as making some categories out of the average income.

We may want the user to prepare such discretization in advance, but the number of
such virtual attributes can be very large. From this point of view, we suggest a semi-
interactive mining that lets the data mining engine suggest the discretization auto-
matically (based on the distribution of values) with the possibility that the user will
change (and fix for future use) some discretization later as he/she sees the attribute
used in results.

In other words, the before-distinct steps of data preparation, modeling and evalua-
tion blend. That may introduce new challenges and problems in the whole context of
KDD.

Transaction 1
Transaction 2
Transaction 3
…

Client ABC

Relational Data Mining and GUHA 107

At this point, note that the attribute SingleIncome in the previous example was created
as an association rule effective on the set of transactions that belong to the specified
client. In theory, we can run the search for the association rules recursively, and use
their validity as a new attribute at higher level. In practice, we doubt that it is useful to
do it for depth more than one, as it leads to result hypotheses, which can hardly be
expressed in plain English and meaningfully used in practice. Furthermore, the
general recursive approach would be extremely computationally intensive. That
means we practically accept only star-schema of database, with one table being
master and the rest being detail tables.

2.4 Types of virtual attributes
At this point, we can summarize all methods and possibilities, how we can construct a
virtual attribute. We can define a set of aggregation functions that can be applied to
attributes in a detail table. The generator can try to run all aggregation functions on all
attributes. However, in practice there are semantic limits on usage of certain aggrega-
tions on particular attributes. For example, there is no point computing the sum of
values that denote the current amount of goods in a warehouse in every month.
Unfortunately, the user must specify these limits. Among the usual aggregates, we
may consider sum, average value, mean value, standard deviation, minimum, maxi-
mum, first and third quartile, count and many others. More advanced aggregates may
be integration or linear regression (e.g. for time series). It may prove useful to allow
the user to provide user-defined aggregate functions as well.

In the previous example, we have seen the usage of an arbitrary association rule as
a virtual attribute (see also [6]). It can describe (among others) implication, equiva-
lence, statistical independence and even relations on general contingency tables [8].

The last category of virtual attributes is existential quantifiers. Within this category,
it is necessary to use constants bound to a single object, or global constants specified
by user. Note that we have seen (in the example above) the literal SourceAccount(acc345),
which used a constant acc345 bound to a single bank client (other clients may have
other sources of income). The existential quantifier can be used for example to define
a boolean attribute PaysTaxes, such that there exists a transaction with target account
number equal to government account (which is a constant defined by user).

3 Other Methods of Relational Data Mining
3.1 Inductive Logic Programming
The most widely adopted method for relational data mining is inductive logic pro-
gramming (ILP). A summary of the methods and taxonomy is given in [11, 16]. In
[15] the author notes the following. While approaches such as ILP inherently suffer
from a large search space, integrating aggregation operators further increases the
hypothesis space. Moreover, the search space is less well-behaved because of the
problem of non-monotonicity, which renders traditional pruning methods in ILP
inapplicable. Clearly, we must give up the idea of performing a systematic search for
a good hypothesis and the search must be more heuristic.

As we are proposing the extension of GUHA method, which mines for association
rules, we focus on the part of ILP that concerns relational association rules as well.

108 Tomáš Karban

3.2 WARMR
The paper [12] presents an algorithm WARMR, which is an extension to APRIORI
algorithm [2] for mining of relational association rules. You can find the implementa-
tion of WARMR in Aleph [17] or ACE [18].

APRIORI algorithm is a levelwise search through the lattice of itemsets. It works
in two phases. First, we search for so-called frequent itemsets; we examine every
transaction and count the number of transactions containing a given itemset (as a
subset). In the second phase, we create association rules from frequent itemsets that
meet minimum specified confidence and support (see paragraph 2.1).

This two-phase approach is the same for WARMR. The notion of itemsets is gen-
eralized to atomsets, which are sets of logical atoms constructed from database
relations. We count the number of examples that are covered by a given atomset. This
is implemented in Prolog such that an atomset is converted to an existentially quali-
fied conjunction and then run as a Prolog query. If it succeeds, the atomset covers the
specified example (a counter is increased); if it fails, the atomset does not cover the
example.

Now having the set of frequent k-atomsets (atomsets containing exactly k atoms),
we construct candidate (k+1)-atomsets. This is analogous to APRIORI, although new
step is introduced to prune atomsets. This extra step involves running a theorem
prover to verify whether the atomsets are contradictory or redundant with respect to a
user-specified clausal theory. This theory provides the user with a powerful tool to
specify taxonomies, mutual exclusion relations, and other types of background infor-
mation known to hold in the database. It contributes to the efficiency of the algorithm
as well as to the quality of the output.

The example of association rule over multiple relations can be the following:

likes(KID, dogs) & has(KID, fish) ⇒ prefers(KID, dogs, fish); conf. 65%, supp. 20%

This association rule states that 65% of kids, who like dogs and have fish, prefer
dogs to fish; furthermore, 20% of all kids like dogs, have fish and prefer dogs to fish.
There can be variables instead of constants in association rules as well, like:

likes(KID, dogs) & has(KID, A) ⇒ prefers(KID, dogs, A)

3.3 Comparison of GUHA and WARMR
We can separate all algorithms and methods of relational data mining to two basic
categories, according to the first part of [14]. The methods using aggregation to bring
the information from detail tables to the master table belong to the first category.
These methods use the aggregates as a description of the whole set of data that corre-
sponds to the examined object from the master table.

The second category comprises of algorithms that handle sets by looking at proper-
ties of their individual elements. For example, a part of the pattern can be of the form
“there exists an x in the set such that P(x) holds”, where P can be a relatively compli-
cated condition. Most ILP systems follow this approach.

We can call methods of the first category aggregating methods and methods of the
second category selective methods. To make this distinction clearer, see the two
simple concepts in the following the example:

Relational Data Mining and GUHA 109

• people whose average account balance is above $10.000
• people who pay telephone by encashment

(i.e. there exists a certain type of transaction)
Clearly, WARMR algorithm is using an existentially qualified conjunction to count
the number of examples covered by a given atomset. That puts it into the category of
selective methods. On the other hand, ideas presented in this paper as an extension to
GUHA method cover both these categories. Aggregations create virtual attributes
easily and are very suitable for subsequent processing. Furthermore, using association
rules as a basis for virtual attributes is a more advanced concept than simple aggrega-
tion, but it can be placed into aggregating category as well, as association rules
describe the whole set of detail data related to currently examined object.

It is very easy to cover the existentially qualified conjunction case as well. In fact,
the principle is very similar to association rules because they have conjunctions in
common. If we create a conjunction of literals (out of attributes in detail data table),
we can create a corresponding bit string and look for the bit with value 1 (in the
segments belonging to individual objects of master table). If we find the bit with value
1, the existential quantifier is satisfied. Note that it is not necessary to count the
number of 1 as in the case of association rules, so we can implement it substantially
faster.

Also, note that there is a major difference between virtual attributes created as ag-
gregations and association rules. While aggregations are computed from the detail
data directly (e.g. by calling SQL queries or running more complex user-defined
functions), creating virtual attributes out of association rules implies discretization of
detail data (if necessary), creating bit strings of discrete categories, running a kind of
single-table data mining engine (GUHA-based) and finally discretization of the
results to allow further use as a virtual attribute in the master table.

In the paper [9], authors also note a practical difference between aggregating and
selective methods. While the former approach is more suitable to highly non-
determinate domains (usually in business), the latter is geared more towards structur-
ally complex domains, such as molecular biology or language learning. This holds in
comparison of WARMR and proposed Rel-Miner as well. While Rel-Miner is sup-
posed to work with simple database schema (master-detail) containing many-valued
categories and even real numbers, WARMR works with arbitrarily complex data
structures with only “simple data”, searching for frequent structural patterns.

Continuing this differentiation, WARMR produces association rules spanning data
tables to an arbitrary depth, bound together by the unique identification of the basic
object. It is also capable of working with recursive tables. The output is a structural
pattern that holds frequently, looking to individual sub-databases created from the
original one by selecting rows regarding a single object at a time from all tables. On
the contrary, Rel-Miner produces association rules that you can always comprehend
the same way as in the single-table case, only “enhanced” by virtual attributes, which
were created at run time from detail tables.

110 Tomáš Karban

4 Making Rel-Miner Feasible
4.1 Complexity of relational hypotheses
As we already mentioned, the hypotheses space for the relational association rules is
enormous. The total number of hypotheses grows with combinatorial numbers con-
sidering the number of attributes of the master table. While the number of possible
aggregations is linear to the number of attributes in detail tables, the number of virtual
attributes made of association rules suffers the combinatorial growth.

We may want to limit this growth considerably by limiting the number of virtual
attributes (made of association rules in particular) that can be used simultaneously.
The rationale is that every such an attribute strongly contributes to the complexity of
the result. The process of data mining must keep in mind that it should deliver novel,
potentially useful and ultimately understandable patterns. Using complex association
rules as a virtual attributes makes the interpretation actually very difficult, so there is
no point in pushing too hard with it.

4.2 Reordering of Hypotheses Evaluation
Another useful concept is a suitable reordering of the execution. The idea is to verify
the hypotheses starting with the simple ones and going through more and more
complex ones. Even if we admit the impossibility to process the entire hypotheses
space, we want to be able to get the reasonable sample of results. Evaluation of the
complexity of a hypothesis is inherently a heuristic function and the system should
allow the user to fine-tune it to his/her needs.

This reordering implies that in the case of early stopping of the computation at any
time, we are guaranteed to have finished the evaluation of all simpler hypotheses,
which makes the partial result still somehow usable.

Unfortunately, this concept makes the process of verification rather inefficient. In
the paper [13], the authors recommend using of the query-packs. That means to
evaluate hypotheses in such order that similar hypotheses (having many attributes in
conjunction in common) are evaluated together. It saves computing of the common
part repeatedly. Analogous idea is in literal and cedent traces that were implemented
in LISp-Miner project (see [7]).

We suggest a compromise solution for Rel-Miner, where the whole hypotheses
space is divided into jobs. Every job is restricted in the hypothesis complexity (see
previous paragraph) and is “local” in terms of cedent traces. Individual jobs can be
evaluated optimally, even though there is some overhead among the jobs.

4.3 Distributed Computing
Thinking about the jobs, we can naturally make Rel-Miner distributed to many com-
puters/processors. It is not difficult to design a “job manager” that will assign
individual jobs to different computers. The only difficulty is with an excessive net-
work communication; if we take into account the expected size of data in a bit string
representation (see [7]), we can establish a bit string cache at every computer, so it
will fetch every bit string at most once and store it for later use.

Relational Data Mining and GUHA 111

4.4 Limiting the Amount of Output
Together with the hypotheses space explosion, we can expect increased number of
valid hypotheses that will go to output. We must keep in mind that our data mining is
supposed to provide potentially useful results. Hence, the number of hypotheses (as
results) that the user can review is limited. It is certainly possible to employ post-
processing methods, such as filtering and sorting (by user-provided criteria). The
possibility to limit the total size of output is nonetheless convenient. This limitation
must preserve the most important hypotheses, based on their natural value.

4.5 Importance of Post-Processing
To continue with notes from the previous paragraphs, it is important to point out that
the post-processing step (i.e. the evaluation according to CRISP-DM methodology
[3]) is more important than in a single-table case. We also mentioned that blending the
steps of data preparation, modeling and evaluation makes the overall usability worse.

We suggest creating a visual browser tool that will display the hypotheses lattice as
a dynamic graph. In this graph, nodes are individual hypotheses and edges connect
nodes that have something in common. The strength of the edge (displayed as length
and/or thickness) denotes the measure of similarity between the connected hypothe-
ses. The size (and/or color) of the node denotes its natural value. Unfortunately,
making of such a tool is a task for a separate and generally independent research.

4.6 Possibility of User Interaction during Computation
With respect to possibly “endless” task run, it is necessary to allow viewing of interim
results. During browsing of the results, the user should be able to make slight modifi-
cations to the task setting easily. When the user sees for instance an unreasonable
hypothesis, because it describes semantically incorrect aggregation or an unsuitable
combination of attributes, he/she can prevent the generator to work further on it
(recall that although “local”, more complex hypotheses are left for future computa-
tions). On the contrary, boosting the priority of some hypothesis can mitigate its
complexity, so the hypotheses in the close neighborhood will be computed sooner.
Research on this topic is again out of scope of this paper.

4.7 Hypotheses in Natural Language
The paper [9] shows, how to formulate mechanically association rules to reasonable
sentences in natural language. You can make a limited language model, which mainly
consists of formulation patterns independent of the application domain. Afterward,
you supply domain vocabulary that is closely related to attributes in the database.
Another area of research is to extend this method for use in relational data mining.

5 Conclusion
We have presented the extension to GUHA method for relational data mining. This
approach is different from the ILP approach in many aspects, namely the target
application domain. Association rules produced by Rel-Miner can contain aggrega-
tions, inner association rules (valid on detail data tables) or existential attributes. This
makes them more general compared to association rules produced by WARMR
algorithm. On the other hand, Rel-Miner is meant to run on a simple “master-detail”
database schema, not going to depth more than 1. ILP methods in general are capable

112 Tomáš Karban

of mining in arbitrarily complex database structures, focusing more on the structure of
the database itself, than on complex computations with attribute values.

Both methods suffer from an explosion of the hypotheses space and both have
unique ways to deal with it. Among the most important, Rel-Miner uses heuristics to
prune the space and chooses the verification of hypotheses in the order from simple to
more complex.

Reference
1. Hájek, P. – Havránek, T.: Mechanizing Hypothesis Formation – Mathematical Foundations for a

General Theory. Springer-Verlag, 1978
2. Aggraval, R. et al.: Fast Discovery of Association Rules. In Fayyad, U.M. et al.: Advances in

Knowledge Discovery and Data Mining, pp. 307-328, AAAI Press / MIT Press, 1996
3. CRISP-DM Methodology – http://www.crisp-dm.org/
4. Šimůnek, M.: Academic KDD Project LISp-Miner. In Abraham, A. – Franke, K. – Köppen, M.

(eds.): Intelligent Systems Desing and Applications (Advances in Soft Computing series), ISBN
3-540-40426-0, Springer-Verlag, 2003, pp. 263–272

5. Academic KDD software system – LISp-Miner: http://lispminer.vse.cz/
6. Rauch, J.: Interesting Association Rules and Multi-relational Association Rules. In

Communications of Institute of Information and Computing Machinery, Taiwan, Vol. 5, No. 2,
May 2002, pp. 77-82

7. Rauch J. – Šimůnek, M.: An Alternative Approach to Mining Association Rules. In Lin, T.Y. –
Ohsuga, S. – Liau, C.J. – Tsumoto, S. (eds.): Data Mining: Foundations, Methods, and
Applications, Springer-Verlag, 2005

8. Rauch, J. – Šimůnek, M. – Lín, V.: Mining for Patterns Based on Contingency Tables by KL-
Miner – First Experience. In Lin, T.Y. – Ohsuga, S. – Liau, C.J. – Hu, X. (eds.): Foundations and
Novel Approaches in Data Mining, Springer-Verlag, 2005

9. Strossa, P. – Černý, Z. – Rauch, J.: Reporting Data Mining Results in a Natural Language. In
Lin, T.Y. – Ohsuga, S. – Liau, C.J. – Tsumoto, S. (eds.): Data Mining: Foundations, Methods,
and Applications, Springer-Verlag, 2005

10. Džeroski, S. – Lavrač, N. (eds.): Relational Data Mining, Springer 2001,
ISBN: 3-540-42289-7

11. Džeroski, S.: Multi-Relational Data Mining: An Introduction. In ACM SIGKDD Explorations
Newsletter, Vol. 5, Issue 1, 2003, pp. 1-16

12. Dehaspe, L. – De Raedt, L.: Mining Association Rules in Multiple Relations. In Proceedings of
the 7th International Workshop on Inductive Logic Programming, Volume 1297, LNAI, pp. 125-
132, Springer-Verlag, 1997.

13. Blockeel, H. – Dehaspe, L. – Demoen, B. – Janssens, G. – Ramon, J. – Vandecasteele, H.:
Improving the Efficiency of Inductive Logic Programming Through the Use of Query Packs. In
Journal of Artificial Intelligence Research, volume 16, 2002, pp. 135-166

14. Blockeel, H. – Bruynooghe, M.: Aggregation Versus Selection Bias, and Relational Neural
Networks. In IJCAI-2003 Workshop on Learning Statistical Models from Relational Data, SRL-
2003, Acapulco, Mexico

15. Assche, A. van – Vens, C. – Blockeel, H. – Džeroski, S.: A Random Forest Approach to
Relational Learning. In2 Dietterich, T. – Getoor, L. – Murphy, K. (eds.): ICML 2004 Workshop
on Statistical Relational Learning and its Connections to Other Fields, pp. 110-116

16. Blockeel, H. – Sebag, M.: Scalability and Efficiency in Multi-Relational Data Mining. In ACM
SIGKDD Explorations Newsletter, Vol. 5, Issue 1, 2003, pp. 17-30

17. A Learning Engine for Proposing Hypotheses (Aleph), ILP system
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html

18. The ACE Datamining system, http://www.cs.kuleuven.ac.be/~dtai/ACE/

Testing Dimension Reduction Methods
for Text Retrieval

Pavel Moravec

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

pavel.moravec@vsb.cz

Testing Dimension Reduction Methods
for Text Retrieval

Pavel Moravec

Department of Computer Science, VSB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

pavel.moravec@vsb.cz

Abstract. In this paper, we compare performance of several dimension
reduction techniques, namely LSI, random projections and FastMap. The
qualitative comparison is based on rank lists and evaluated on a subset of
TREC 5 collection and corresponding TREC 8 ad-hoc queries. Moreover,
projection times and intrinsic dimensionality were measured to present
a common baseline for methods’ usability.

Key words: vector model, LSI, information retrieval, random projection,
FastMap, ranked lists, TREC, intrinsic dimensionality, curse of dimensionality

1 Introduction

The information retrieval [14, 2] deals among other things with storage and
retrieval of multimedia data that can be usually represented as vectors in mul-
tidimensional space. This is especially suitable for text retrieval, where we store
a collection (or corpus) of texts. There are several models used in text retrieval,
from which we will use the vector model [12] providing qualitatively better re-
sults than the Boolean model [14], which combines word matching with Boolean
operators.

In the vector model, we have to solve several problems. The ones addressed
in this paper are problems with the ability to index given collection, search
efficiency and result set quality.

Latent semantic indexing (LSI) adds an important step to the indexing pro-
cess. In addition to recording which terms a document contains, the method
examines the document collection as a whole, to see which other documents
contain some of those same terms. LSI considers documents that have many
terms in common to be semantically close, and ones with few words in com-
mon to be semantically distant. However it is not suitable for huge collections
and is computationally expensive, so other methods of dimension reduction were
proposed. We test two of them – Random projection, which projects document
vectors into a subspace using a randomly generated matrix, and FastMap, a
pivot-based method based loosely on Multi-Dimensional Scaling. Since both of
them were created for Euclidean spaces, they may not supply good results for a

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 113–124, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

114 Pavel Moravec

different distance functions. In our case, we need to evaluate, how these methods
behave when using cosine measure, common in text retrieval.

The rest of this paper is organised as follows. In the second section, we de-
scribe classic vector model and its problems, which may be addressed by dimen-
sion reduction. The third section explains used dimension reduction methods. In
the fourth section, we briefly describe qualitative measures used for evaluation
of our tests and in the fifth the projection properties. In the sixth section, we
supply results of tests on a subset of TREC 5 collection. In conclusions we give
ideas for future research.

2 Vector model

In vector model, a document Dj is represented as a vector dj of term weights,
which record the extent of importance of the term for the document.

To portrait the vector model, we usually use an n × m term-by-document
matrix A, having n rows – term vectors t1 . . . tn (where n is the total number of
terms in collection) and m columns – document vectors d1, . . . dm, where m is
the size of collection (or corpus) C.

Term weights can be calculated in many different ways: wij ∈ {0, 1}; as a
membership grade to a fuzzy set; or as a product of functions of term frequency
both in a document and in the whole collection [13] (usually tf.idf – count of term
occurrences in the document multiplied by a logarithm of the inverse portion
of documents containing the term). The normalisation of document vectors is
sometimes applied during index generation phase to make the calculation in the
retrieval phase faster.

A query Q is represented as an n-dimensional vector q in the same vector
space as the document vectors. There are several ways how to search for relevant
documents. Generally, we can compute some Ln metrics to represent the simi-
larity of query and document vectors. However, in text retrieval better results
can be obtained by computing similarity, usually using the cosine measure:

SIMcos(dj , q) =
dj • q

||dj ||.||q||
=

n∑
i=1

(wi,j . qi)√
n∑

i=1

w2
i,j .

n∑
i=1

q2
i

As one can see, we do not only obtain documents which are considered rel-
evant, but according to their similarity (or distance) to the query vector, we
can order them and obtain a rank for every document in the answer set. If we
need a metrics instead of similarity measure, we can use the deviation metric
ddev(x, y) = arccos(SIMcos(x, y)).

We can define a threshold t, too. All documents closer than t will be consid-
ered relevant, whilst the rest will be irrelevant. However, the choice of t is not
exact and its value is usually determined experimentally.

Testing Dimension Reduction Methods for Text Retrieval 115

The main problem of the vector model is that the document vectors have a big
dimension (e.g. 150,000) and are quite sparse (i.e. most co-ordinates are zero). If
we store them as classical vectors, the storage volume is huge – consider size of
a term-by-document matrix consisting of 100,000 terms and 200,000 documents.

We can use existing compression schemes for the term-by-document matrix
representation to decrease memory usage, but then the access time is much
longer and we are limited by the fact, that we cannot access either the term or
the document vectors quickly. Another way is to use combined storage with both
row and column compression, but updating would still pose a problem.

The second problem is the so-called “curse of dimensionality”, which causes
classical indexing structures like M-trees, A-trees, iDistance, etc. (see [5]), to
perform in the same way or even worse than sequential scan in high dimen-
sions. This is caused by the distribution of document vectors, which prevents
partitioning into meaningful regions.

Third, the synonyms of terms and other semantically related words are not
taken into account.

The first two problems can be addressed for queries containing only a few
words by inverted list, which is in fact a compressed storage of term vectors.
Only term vectors for terms contained in a query Q are loaded and processed,
computing rank for all documents containing at least one of the terms at once.
However, the inverted list is not efficient when searching for similar documents,
because significant part of index must be processed.

3 Dimension reduction methods

We used three methods of dimension reduction - latent semantic indexing, ran-
dom projection, and FastMap, which are briefly described bellow.

3.1 Latent semantic indexing

LSI [3] is an algebraic extension of classical vector model. Its benefits rely on
discovering latent semantics hidden in the term-by-document matrix A. Infor-
mally, LSI discovers significant groups of terms (called concepts) and represents
the documents as linear combinations of the concepts. Moreover, the concepts
are ordered according to their significance in the collection, which allows us to
consider only the first k concepts important (the remaining ones are interpreted
as “noise” and discarded). To name the advantages, LSI helps solve problems
with synonymy and homonymy. Furthermore, LSI is often referred to as more
successful in recall when compared to vector model [3], which was proved for
pure (only one topic per document) and style-free collections [11].

Formally, we decompose the term-by-document matrix A by singular value
decomposition (SVD), calculating singular values and singular vectors of A. SVD
is especially suitable in its variant for sparse matrices.

Theorem 1 (Singular value decomposition [3]). Let A is an n ×m rank-
r matrix and values σ1, . . . , σr are calculated from eigenvalues of matrix AAT

116 Pavel Moravec

as σi =
√

λi. Then there exist column-orthonormal matrices U = (u1, . . . , ur)
and V = (v1, . . . , vr), where UT U = In a V T V = Im, and a diagonal matrix
Σ = diag(σ1, . . . , σr), where σi > 0, σi ≥ σi+1. The decomposition

A = UΣV T

is called singular decomposition of matrix A and the numbers σ1, . . . , σr are
singular values of the matrix A. Columns of U (or V) are called left (or right)
singular vectors of matrix A.

Now we have a decomposition of the original term-by-document matrix A.
The left and right singular vectors (i.e. U and V matrices) are not sparse. We
get r nonzero singular numbers, where r is the rank of the original matrix A.
Because the singular values usually fall quickly, we can take only k greatest
singular values with the corresponding singular vector coordinates and create a
k-reduced singular decomposition of A.

Definition 1 ([3]). Let us have k (0 < k < r) and singular value decomposi-
tion of A

A = UΣV T ≈ Ak = (UkU0)
(

Σk 0
0 Σ0

) (
V T

k

V T
0

)
We call Ak = UkΣkV T

k a k-reduced singular value decomposition (rank-k SVD).

Instead of the Ak matrix, a concept-by-document matrix Dk = ΣkV T
k is

used in LSI as the representation of document collection. The document vec-
tors (columns in Dk) are now represented as points in k-dimensional space (the
pseudodocument-space). For an illustration of rank-k SVD see Figure 1.

Fig. 1. rank-k SVD

Rank-k SVD is the best rank-k approximation of the original matrix A.
This means that any other decomposition will increase the approximation error,
calculated as a sum of squares (Frobenius norm) of error matrix B = A − Ak.
However, it does not implicate that we could not obtain better precision and
recall values with a different approximation.

Testing Dimension Reduction Methods for Text Retrieval 117

The value of k was experimentally determined as several tens or hundreds
(e.g. 50–250), it is known to be dependent on the number of topics in collection,
however its exact value cannot be simply determined.

The LSI is hard to compute with complexity O(mn2) for dense and O(mnc)
for sparse matrices having on the average c nonzero values per column [11]. Once
computed, it reflects only the decomposition of original term-by-document ma-
trix. If several hundreds of documents or terms have to be added to existing
decomposition (folding-in), the decomposition may become inaccurate. Because
the recalculation of LSI is expensive, so it is impossible to recalculate LSI every
time documents and terms are inserted. The SVD-Updating [3] is a partial solu-
tion, but since the error slightly increases with inserted documents and terms,
If the updates happen frequently, the recalculation of SVD may be needed soon
or later.

3.2 Approximate LSI calculation

Several approximate methods for faster SVD calculation were offered, such as
application of Monte-Carlo method [8] and using random projection (see sec-
tion 3.3) of document vectors into suitable l-dimensional subspace before LSI
calculation for resulting k dimensions [11].

We used the latter method, applying LSI on a matrix with reduced document
vectors created by random projection. This method has a complexity of O(ml(l+
c)).

3.3 Random projection

Random projection is a fast method of dimension reduction. Unlike LSI method,
it does not require expensive computation of decomposition. Instead, it uses
a randomly-generated projection matrix to reduce dimension of vector space.
Vector from original space with dimension n is multiplied with projection matrix
to obtain a vector in reduced space of dimension l, where l << n.

Results of dimensionality reduction by random projection are of course worse
than in case of LSI and we do not obtain latent semantics. If the reduced di-
mension is high enough and random values building projection matrix have a
zero-mean unit-variance distribution such as N(0, 1), the Euclidean distances
and angles between vectors are well-preserved.

The minimal “safe” dimension can be obtained from Johnson-Lindenstrauss
lemma, however the currently known bound is still quite high and experiments
showed that even smaller dimensions can be used [4]. Interestingly, the resulting
dimension does not depend on original one, only on number of original points.
With current best known bound, the lemma looks as follows:

Theorem 2 (Johnson-Lindenstrauss [1]). For every set P of m points in
Rn, given ε > 0, β > 0 and l > 0, l ≥ l0 = 4+2β

ε2/2−ε3/3 log m, there exists with
probability at least 1− n−β mapping f : Rn → Rl, such that for all u, v ∈ P

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2

118 Pavel Moravec

Since we JL lemma considers only Euclidean distances, we don’t have yet
any bounds for cosine measure. Papadimitriou et al showed in [11] that a bound
can be found for cosine measure, too. In that case

f(vi).f(vj) ≤ (1− ε)vi.vj + ε(v2
i + v2

j).

Are the lengths of all vk ≤ 1, changes the inner product at most by 2ε. Again,
real-life data indicate that the bound is still too high and smaller dimensions
can be used.

When calculating the Euclidean distances, we need to apply a scaling factor√
n/l first, to obtain correct results because less coordinates are being used.
Classical implementations of random projection used orthogonalisation, nor-

malisation and a dense projection matrix with Gaussian distribution. Achlioptas
showed that orthogonalisation and normalisation can be skipped. He also pro-
posed yet another powerful simplification – instead of using real coefficients of
N(0, 1) distribution, he offered two possible distributions for elements rij of pro-
jection matrix R [1]:

rij =
√

3.

8>>>><
>>>>:

−1 with probability 1
6

0 with probability 2
3

+1 with probability 1
6
.

rij =

8<
:
−1 with probability 1

2

+1 with probability 1
2
.

The
√

3 component does not have to be stored in projection matrix. It can be
used together with scaling factor after calculation of projected vector coordinate.
If we are calculating cosine measure, it can be even discarded and instead of
multiplication, we can use addition and subtraction.

We used this method in our tests, since previous results [10] indicated almost
the same performance as in the case of classic random projection. The complexity
of random projection is O(mcl).

3.4 FastMap

FastMap [7] is a pivot-based technique of dimension reduction, suitable for Eu-
clidean spaces.

In first step, it chooses two points, which should be most distant for calculated
reduced dimension. Because it would be expensive to calculate distances between
all points, it uses following heuristics:

1. A random point c0 is chosen.
2. The point bi having maximal distance δ(ci, bi) from ci is chosen, and based

on it we select the point ai with maximal distance δ(bi, ai)
3. We iteratively repeat step 2 with ci+1 = ai (authors suggest 5 iterations).
4. Points a = ai and b = bi in the last iteration are pivots for the next reduction

step.

In second step (having the two pivots a, b), we use the cosine law to calculate
position of each point on line joining a and b. The coordinate xi of point pi is

Testing Dimension Reduction Methods for Text Retrieval 119

calculated as

xi =
δ2(ai, pi) + δ2(ai, bi)− δ2(bi, pi)

2δ(ai, bi)
and the distance function for next reduction step is modified to

δ′2(p′i, p
′
j) = δ2(pi, pj)− (xi − xj)2

The pivots in original and reduced space are recorded and when we need to
process a query, it is projected using the second step of projection algorithm
only. Once projected, we can again use the original distance function in reduced
space.

The complexity of FastMap is O(mck) for sparse and O(mnk) for dense
matrices.

4 Qualitative measures of Retrieval Methods

Since we need an universal evaluation of any retrieval method, we use some
measures to determine quality of such method. In case of Information Retrieval
we usually use two such measures - precision and recall. Both are calculated
from the number of objects relevant to the query Rel – determined by some
other method, e.g. by manual annotation of given collection and the number
of retrieved objects Ret. Based on these numbers we define precision (P) as a
fraction of retrieved relevant objects in all retrieved objects and recall (R) as a
fraction of retrieved relevant objects in all relevant objects. Formally:

P =
|Rel ∩Ret|
|Ret|

and R =
|Rel ∩Ret|
|Rel|

So we can say that recall and precision denote, respectively, completeness of
retrieval and purity of retrieval. Unfortunately, it was observed that with the
increase of recall, the precision usually decreases [14]. This means that when it
is necessary to retrieve more relevant objects, a higher percentage of irrelevant
objects will be probably obtained, too.

For the overall comparison of precision and recall across different methods
on a given collection, we usually use the technique of rank lists [2], where we
first sort the distances from smallest to greatest and then go down through the
list and calculate maximal precision for recall closest to each of the 11 standard
recall levels (0.0, 0.1, 0.2, . . . , 0.9, 1.0). If we are unable to calculate precision on
i-th recall level, we take the maximal precision for the recalls between i − 1-th
and i + 1-th level.

5 Projection properties

5.1 Intrinsic dimensionality

The search in a collection of high-dimensional document vectors is negatively
affected by a phenomenon called the curse of dimensionality [6], which causes

120 Pavel Moravec

almost all regions to be overlapped by nearly every “reasonable” query region;
so that searching deteriorates to sequential scan over all the classes. To judge
the indexability of given dataset (in a metric space), we can use the concept
of intrinsic dimensionality [6], defined as ρ = µ2

2σ2 , where µ and σ2 are the
mean and the variance of the dataset’s distance distribution. In other words, the
intrinsic dimensionality is low if there exist tight clusters of objects. Conversely,
if all pairs of the indexed objects are almost equally distant, the intrinsic dimen-
sionality is high (i.e. the mean is high and/or the variance is low), which means
that the dataset is poorly intrinsically structured.

5.2 Projection stress

Sometimes, we need to verify, how well are the distances between objects pre-
served in the reduced dimension. To do so, we usually calculate the stress of
projection f as

stress =

√
(
∑m

i,j=1(d′(f(xi), f(xj))− d(xi, xj))2∑m
i,j=1 d2(xi, xj)

,

where d is the distance function in original and d′ in projected space. The lower
the stress, the better. If stress = 0, then the projection did not change the
distances at all.

However, the stress function must not be overrated – even if the distances
are not well-preserved, they might have been scaled by some factor, making the
only difference in the choice of similarity threshold.

6 Experimental results

For testing of our approach, we used a subset of TREC collection [16], consisting
of 16,889 Los Angeles Times articles (years 1989 and 1990) assessed in TREC-8
ad-hoc queries. We indexed this collection, removing well-known stop-words and
terms appearing in more than 25% of documents, thus obtaining 49,689 terms.

We calculated random projection into dimensions l ∈ {100, 250, 500, 1000};
both classic and approximate LSI (with random projection into l = 1000) for
k ∈ {100, 250}. For FastMap, we used for every value of k suggested 5 iterations
to choose “most distant” points. Additionally we calculated FastMap for k = 100
and 3 iterations (which yielded slightly worse results). Classic LSI was included
to provide a baseline, since its improvement of recall is well-known.

The reduction and query projection times are shown in Table 1 1.

6.1 Analytical results

We calculated stress and intrinsic dimension for each projection method for
deviation metrics.
1 Since the LSI was calculated on a different computer, the LSI calculation times are

only approximate

Testing Dimension Reduction Methods for Text Retrieval 121

Table 1. Times of (a) dimension reduction and (b) projection of 45 TREC queries [s]

Reduction method
k LSI FastMap RP

50 – 771 5.43
100 > 5400 910 11.98
250 > 14400 2193 26.81
500 – – 50.51
1000 – – 93.44

(a)

Reduction method
k LSI FastMap RP RP+LSI

50 0.05 0.14 0.02 0.05
100 0.12 0.28 0.03 0.12
250 0.35 1.00 0.07 0.35
500 – – 0.13 0.78
1000 – – 0.25 –

(b)

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Distance histogram − VSM

distance

di
st

an
ce

 fr
eq

ue
nc

y
[%

]

(a)

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

Distance histogram − FM250

distance

di
st

an
ce

 fr
eq

ue
nc

y
[%

]

(b)

Fig. 2. Distance distribution histograms for Deviation metrics and (a) vector model,
(b) FastMap

The stress, summarised in Table 2a is quite low for both LSI and random
projection, however in case of FastMap are the deviations not well-preserved.
From the look at distance distribution histograms of original and FastMap re-
duced space in Figure 2 one can observe that the distances are highly reduced.
The question, if the change affects only the dissimilarity threshold will be partly
solved in the next section.

In Table 2b, we can observe high intrinsic dimensions for both LSI vari-
ants and especially for random projection, whilst the intrinsic dimension for
FastMap is surprisingly low. Additional tests on real data structures are re-
quired for FastMap, to verify the indexability of reduced data. In case of LSI,
we recently offered a modified σ-LSI model [15], which trades the precision for
better indexing with Metric Access Methods, namely M-trees.

122 Pavel Moravec

Table 2. (a) Stress and (b) intrinsic dimensionality of reduced datasets

Reduction method
k LSI FastMap RP RP+LSI

50 0.210 0.978 0.296 0.247
100 0.224 0.978 0.284 0.259
250 0.242 0.980 0.282 0.270
500 – – 0.279 0.275
1000 – – 0.278 –

(a)

Reduction method
k LSI FastMap RP RP+LSI

50 25.1 0.2 53.3 46.8
100 51.1 0.5 100.2 93.9
250 121.1 0.9 217.1 206.4
500 – – 343.7 329.7
1000 – – 489.3 –
VM ←− 31.8 −→

(b)

6.2 Query Evaluation

Firstly, we used rank lists and measured interpolated average precision of the
above mentioned TREC Queries at the 11 standard recall levels. Results are
summarised in Figure 3. We can see that while classic LSI provides even better
results than vector model due to latent semantics, other reduction techniques try
with a different success to reach the results of vector model. In our case, we got
results close to vector model for random projection with l=1000 and FastMap
with k=250.

Since the important part of precision-recall curve is close to the 100% recall,
we also calculated the mean average precision for all relevant documents in rank
lists. The relative results against vector model (100%) are shown in Table 3.

Table 3. Mean average precision of different reduction methods

Reduction method
k LSI FastMap RP RP+LSI

50 128% 31% 13% 85%
100 155% 58% 24% 98%
250 112% 80% 37% 79%
500 – – 59% 77%
1000 – – 74% –

7 Conclusion

In this paper, we have compared three well-known dimension reduction meth-
ods from the view of indexability, distance preservation and results on real-live
text data (using cosine measure as similarity function). Whilst the LSI is known
to provide latent semantics, it is computationally expensive and in case we only
need to battle the “curse of dimensionality” by reducing the dimension, FastMap

Testing Dimension Reduction Methods for Text Retrieval 123

0 20 40 60 80 100

0
10

20
30

40

Recall [%]

P
re

ci
si

on
 [%

]
Vector model
LSI k=50
LSI k=100
LSI k=250

(a)

0 20 40 60 80 100

0
10

20
30

40

Recall [%]

P
re

ci
si

on
 [%

]

Vector model
RP l=100
RP l=250
RP l=500
RP l=1000

(b)

0 20 40 60 80 100

0
10

20
30

40

Recall [%]

P
re

ci
si

on
 [%

]

Vector model
RP+LSI k=50 (l=1000)
RP+LSI k=100 (l=1000)
RP+LSI k=250 (l=1000)
RP+LSI k=500 (l=1000)

(c)

0 20 40 60 80 100

0
10

20
30

40

Recall [%]

P
re

ci
si

on
 [%

]
Vector model
FM k=50, 5 iterations
FM k=100, 3 iterations
FM k=100, 5 iterations
FM k=250, 5 iterations

(d)

Fig. 3. Precision at the 11 standard recall levels: (a) LSI, (b) random projection, (c)
approximate LSI calculation and (d) FastMap

or random projection may suffice. As expected, LSI was the slowest, but most
exact method, followed by FastMap, which is faster but less accurate, and Ran-
dom projections which are fast, but accurate only in high dimensions and have
high intrinsic dimensionality.

There are some other newly-proposed methods, which may be interesting
for future testing, e.g. the SparseMap [9]. Additionally, faster pivot selection
technique based on text corpus properties may be considered. Finally, testing
FastMap with deviation metrics on metric structures should answer the question
of projected data indexability.

124 Pavel Moravec

References

1. D. Achlioptas. Database-friendly random projections. In Symposium on Principles
of Database Systems, 2001.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

3. M. Berry, S. Dumais, and T. Letsche. Computation Methods for Intelligent Infor-
mation Access. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
1995.

4. E. Bingham and H. Mannila. Random projection in dimensionality reduction:
applications to image and text data. In Knowledge Discovery and Data Mining,
pages 245–250, 2001.

5. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

6. E. Chávez and G. Navarro. A probabilistic spell for the curse of dimensionality. In
Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX’01),
LNCS 2153. Springer-Verlag, 2001.

7. C. Faloutsos and K. Lin. FastMap: A Fast Algorithm for Indexing, Data-Mining
and Visualization of Traditional and Multimedia Datasets. ACM SIGMOD Record,
24(2):163–174, 1995.

8. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo Algorithms for Finding
Low Rank Approximations. In Proceedings of 1998 FOCS, pages 370–378, 1998.

9. G. R. Hjaltason and H. Samet. Properties of Embedding Methods for Similarity
Searching in Metric Spaces. IEEE transactions on pattern analysis and machine
intelligence, 25(5):530–549, 2003.

10. P. Moravec, M. Krátký, and V. Snášel. Random Projections for Dimension Reduc-
tion in Information Retrieval Systems. In Proceedings of IMAMM’03 Conference,
2003.

11. C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent seman-
tic indexing: A probabilistic analysis. In Proocedings of the ACM Conference on
Principles of Database Systems (PODS), pages 159–168, 1998.

12. G. Salton. The SMART Retrieval System – Experiments in Automatic Document
Processing. Prentice Hall Inc., Englewood Clifs, 1971.

13. G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

14. G. Salton and G. McGill. Introduction to Modern Information Retrieval. McGraw-
ill, 1983.

15. T. Skopal and P. Moravec. Modified LSI Model for Efficient Search by Metric
Access Methods. In Proceedings of ECIR’05 Conference, Santiago de Compostela,
Spain, March 2005.

16. E. M. Voorhees and D. Harman. Overview of the sixth text REtrieval conference
(TREC-6). Information Processing and Management, 36(1):3–35, 2000.

Query Optimization by Genetic Algorithms

Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

vaclav.snasel@vsb.cz

Query optimization by Genetic Algorithms

Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

Department of Computer Science, VŠB-Technical University of Ostrava,
17. listopadu 15, Ostrava - Poruba, Czech Republic

{vaclav.snasel}@vsb.cz

Abstract. This study investigated the use of Genetic algorithms in In-
formation retrieval in the area of optimizing a Boolean query. A query
with Boolean logical operators was used in information retrieval. For Ge-
netic algorithms, encoding chromosomes was done from Boolean query;
where it was represented in the form of tree prefix with indexing for all
terms and all Boolean logical operators. Information retrieval effective-
ness measures precision and recall used as a fitness function in our work.
Other Genetic algorithms operators were used as single point crossover
on Boolean logical operators, and mutation operator was used to ex-
change one of the Boolean operators and, or, and xor with any other
one. The goal is to retrieve most relevant documents with less number
of nonrelevant documents with respect to user query in Information re-
trieval system using genetic programming.

1 Introduction

Information retrieval system is used to retrieve documents that depend on or
relevant to the user input query. The growth in the number of documents in the
internet made it necessary to use the best knowledge or methods in retrieving
the most relevant documents to the user query. For this, Information Retrieval
has become a fact of life for most internet users.

Information retrieval systems deal with data bases which is composed of in-
formation items documents that may consist of textual, pictorial or vocal infor-
mation. Such systems process user queries trying to allow the user to access the
relevant information in an appropriate time interval. Where the art of searching
will be in the databases or hypertext networked databases such as internet or
intranet for text, sound, images or data, see [1]. Thus an information system has
at its heart a collection of data about reality [4].

Most of the information retrieval systems are based on the Boolean queries
where the query terms are joined by the logical operators AND and OR. The sim-
ilarity between a query and documents is measure by different retrieval strategies
that are based on the more frequent terms found in both the document and the
query. The more relevant document is deemed to be the query request. The most
frequently used measures of retrieval effectiveness are precision the percentage
of the retrieved documents that are relevant and recall the percentage of the
relevant documents that are retrieved.

c© K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 125–137, ISBN 80-01-03204-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2005.

126 Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

Information retrieval is concerned with collection and organization of texts,
responding to the requests of internet users for the information seeking text,
retrieving the most relevant documents from a collection of documents; and with
retrieving some of non-relevant as possible. Information retrieval is involved in:

– Representation,
– Storage,
– Searching,
– Finding documents or texts or images those are relevant to some require-

ments for information desired by a user.

Genetic Algorithms (GA) represents one of the artificial intelligence algo-
rithms that are attractive paradigm to improve performance in information re-
trieval systems. Retrieving necessary documents from a collection of such docu-
ments will be achieved using a query to select the most relevant documents. For
implementation of genetic algorithms will be on queries. A form of genetic algo-
rithm started to be applied in information retrieval systems in order to optimize
the query by genetic algorithms

2 Genetic Algorithms (GA)

Genetic algorithms (GA) first described by John Holland in 1960s and further
developed by Holland and his students and colleagues at the University of Michi-
gan in the 1960s and 1970s [10]. GA used Darwinian Evolution to extract nature
optimization strategies that uses them successfully and transform them for ap-
plication in mathematical optimization theory to find the global optimum in
defined phase space [5, 3].

GA is used to find approximate solutions to difficult problems through a set
of methods or techniques inheritance or crossover, mutation, natural selection,
and fitness function. Such methods are principles of evolutionary biology applied
to computer science. GAs are useful for:

– Solving difficult problems.
– Modelling the natural system that inspired design.

Applying genetic algorithms over a population of individuals or chromosomes
shows that several operators are utilized. They are as follows (see Figure 1):

– Fitness operator, metrics to measure scheduler performance for each chro-
mosome in the problem, and calculate the values for each chromosome.

– Selection operator, select two chromosomes with the highest quality values
from the population, that couple to produce two offspring.

– Crossover operator, exchanges two subparts of the selected chromosomes,
the position of the subparts selected randomly.

– Mutation operator, randomly changes the allele value in some location.

Query Optimization by Genetic Algorithms 127

2. Genetic Algorithms (GA)

Genetic algorithms (GA) first described by John Holland in 1960s and further
developed by Holland and his students and colleagues at the University of Michigan
in the 1960s and 1970s [Suhail S. J. Owais. 2003. Timetabling of Lectures in the
Information Technology College at Al al-Bayt University Using Genetic Algorithms].
GA used Darwinian Evolution to extract optimization strategies nature uses
successfully and transform them for application in mathematical optimization theory
to find the global optimum in defined phase space. [Melanie Mitchell. 1998. AN
INTRODUCTION TO GENETIC ALGORITHMS]

GA is an algorithm that used to find approximate solutions to problems that

was difficult to solve it through set of methods or techniques “inheritance or
crossover, mutation, natural selection, and fitness function” that are principles of
evolutionary biology to computer science. GA are useful for:-

• Solving difficult problems.
• Modeling the natural system that inspired design.

Employing of genetic algorithms over a population of individuals or chromosomes:
• Fitness Operator, metrics to measure scheduler performance for each

chromosome in the problem, and calculate the values for each chromosome.
• Selection Operator, select two chromosomes with the highest quality values

from the population, that couple to produce two offspring.
• Crossover Operator, exchanges two subparts of the selected chromosomes,

the position of the subparts selected randomly.
• Mutation Operator, randomly changes the allele value in some location.

Evaluate Fitness Function Ft(x)

Encoding generated population

Meets
Optimization

Criteria?

Selection (select parents)

Crossover (married parents)

Mutation (mutate individual)

Stop

R
E
G
E
N
E
R
A
T
I
O
N

Generate Initial Population

Yes
Best

individuals

Start

Fig – 1: Flowchart for Genetic Algorithm

Fig. 1. Flowchart for Genetic Algorithm

3 Information Retrieval and Genetic Algorithm

This section will present the implementation of information retrieval using ge-
netic algorithms (for SQL we can see [11, 8, 6, 2]). The GA is generally used to
solve optimization problems [5]. GA starts on an initial population with fixed
size of chromosomes ”P-chromosomes”. Each individual are coded according to
chromosome length, where genes are allocated in each position in a chromosome
with different data types, and each gene values called allele. In information re-
trieval, query for relevant documents are representing for each individual or chro-
mosome, and each document described by set of terms. The description di for
document Di, where i = 1 . . . l, the set of terms for Di are Tj , where j = 1 . . . n,
thus di = (w1i , w2i , . . . , wni). The value for each term will be 1 if this term exists
in the document or 0 if not (Note: about another weights for terms was mention
in paper [9]), this indicate that the indexing function that is maps a given index
term t and a given document d is

F : D × T → [0, 1].

128 Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

Defining a query will be combination from set of terms and set of Boolean op-
erators and, or, xor, not. The query set Q defined as set of queries for documents,
define the query processing mechanism by which documents can be evaluated in
terms of their relevance to a given query [7].

Ih this work, we develop genetic program for implementing GA with variable
length of chromosomes and mixture symbolic of information, like real values and
Boolean queries values.

4 Chromosome Encoding

In order to really understand the principle of chromosome encoding, consider a
Boolean query with a series of terms w1, w2, . . . , wn, and set of Boolean opera-
tors from and, or, Xor , and Not. Examples of queries in infix form are:

(w2 orw6) and(w9 andw3)
and

(w3 andw4) xor((w5 and w6) or w8)

In the previous queries ordinary Boolean operators are used, and they are
in infix form, they will be encoded to be chromosomes for genetic programming
but in prefix form such as

and(orw2w6)(andw9w3)
and

xor(andw3w4)(or(andw5w6)w8)

and also they will be represented in a tree form as the chromosomes shown
in Figure 2.and also represented a queries in tree from in a chromosomes such as

 XOR

 and
AND

AND OR

OR AND
W3 W4 AND W8

W2 W6 W9 W3

W5 W6

5. Evaluation and Fitness Function

Evaluation of the information retrieval system, measured by effectiveness, two
statistics are used precision and recall, maximize precision subject to a constraint on
the minimal recall accepted. Recall and precision are often perceived as being
inversely related, i.e., complementary and competitive. [D. H. KRAFT, F. E.PETRY,
B. P. BUCKLES, AND T. SADASIVAN. التاريخ GENETIC ALGORITHMS FOR
QUERY OPTIMIZATION IN INFORMATION RETRIEVAL: RELEVANCE
FEEDBACK. المكان]. Demonstration for precision and recall are shown in fig-2 with
respect to all documents. Where precision and recall are defined as:

=

=

Collection of Documents

Relevant Documents Retrieved Documents
 Recall Precision

Relevant Retrieved Documents

Fig-2: Retrieved and relevant documents

Fitness function for our work will consider as functions for precision and

recall. One function will trade for the other function because of inversely related.

Fig. 2. Flowchart for Genetic Algorithm

Query Optimization by Genetic Algorithms 129

5 Evaluation and Fitness Function

Evaluation of the information retrieval system is done by measuring its effective-
ness. This is best measured by two statistics precision and recall, maximizing
precision is subject to a constraint on the minimal recall accepted. Recall and
precision are often perceived as being inversely related, i.e., complementary and
competitive [7]. For any given set of documents called Collection of Documents,
there is a subset of documents that are relevant to such query called Relevant
documents, and a subset of documents that are retrieved called Retrieved Docu-
ments. Demonstration for precision and recall are shown in Figure 3 with respect
to all documents collected. Where precision and recall are defined as:

Recall = RelevantRetrieved
Relevant Precision = RelevantRetrieved

Retrieved

and also represented a queries in tree from in a chromosomes such as

 XOR

 and
AND

AND OR

OR AND
W3 W4 AND W8

W2 W6 W9 W3

W5 W6

5. Evaluation and Fitness Function

Evaluation of the information retrieval system, measured by effectiveness, two
statistics are used precision and recall, maximize precision subject to a constraint on
the minimal recall accepted. Recall and precision are often perceived as being
inversely related, i.e., complementary and competitive. [D. H. KRAFT, F. E.PETRY,
B. P. BUCKLES, AND T. SADASIVAN. التاريخ GENETIC ALGORITHMS FOR
QUERY OPTIMIZATION IN INFORMATION RETRIEVAL: RELEVANCE
FEEDBACK. المكان]. Demonstration for precision and recall are shown in fig-2 with
respect to all documents. Where precision and recall are defined as:

=

=

Collection of Documents

Relevant Documents Retrieved Documents
 Recall Precision

Relevant Retrieved Documents

Fig-2: Retrieved and relevant documents

Fitness function for our work will consider as functions for precision and

recall. One function will trade for the other function because of inversely related.

Fig. 3. Retrieved and relevant documents

Fitness function for our work will be considered as functions for precision
and recall. One function will trade for the other function because both precision
and recall are inversely related. And they will deal with the ranked documents.
The shortcoming of using recall and precision as fitness functions is that if no
relevant documents are retrieved by a chromosome, then its fitness is zero. This
will lead to loss of all genes for this chromosome.

Computing recall and precision values for each query in our genetic program-
ming as illustrated in equations 1 and 2, the first fitness function RecallF itnessE1

measures recall (equ-1), and the second fitness function PrecisionF itnessE2

measures Precision (equ-2). Where rd is the relevance of document d (1 for rele-
vant and 0 for nonrelevant), fd is the retrieved document d (1 for retrieval and 0
for nonretrieval), and α and β are arbitrary weights. Where α and β are added
specially to precision fitness function [7].

130 Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

ReallF itnessE1 =
∑

d[rd × fd]∑
d[rd]

PrecisionF itnessE2 =
α

∑
d[rd × fd]∑

d[rd]
+

β
∑

d[rd × fd]∑
d[fd]

5.1 Selection operators

Processing genetic algorithm operators will be done in each generation over the
best two chromosomes. From the population of chromosomes, the best two chro-
mosomes depending on the highest fitness values for precision or recall measures
will be selected. These two chromosomes will be called parent1 and parent2.
These two parents will be used to produce two new offsprings.

5.2 Crossover or Recombination operators

In generating two new offsprings from the existing population, offsprings must
have some inheritance from the two parents. Crossover will do that by exchang-
ing subtree from parent1 with subtree from parent2. Positions for subtree1 and
subtree2 will be selected randomly, and the position must be Boolean logical
operator nodes in the tree; such as and, or, xor, and not. This will produce off-
spring1 and offspring2.

Single point crossover was used in our genetic programming. Index identifier
was assigned for each term and each Boolean operator in a prefix form for each
query that was encoded in a tree, see Figure 4.

And they will deal for the ranked documents. The most difficulties when using recall
and precision as fitness function that are if no relevant documents are retrieved by a
chromosome, then its fitness is zero, this yields to lose all genes for this chromosome.

Computing recall and precision values for each query in our genetic

programming, the first fitness function RecallFitnessE1 measured recall, and the
second fitness function PrecisionFitnessE2 measured Precision. Where rd is the
relevance of document d (1 for relevant and 0 for nonrelevant), fd is the retrieved
document d (1 for retrieval and 0 for nonretrieval), and α and β are arbitrary weights.
Where α and β are added specially to precision fitness function. [D. H. KRAFT, F.
E.PETRY, B. P. BUCKLES, AND T. SADASIVAN. التاريخ GENETIC
ALGORITHMS FOR QUERY OPTIMIZATION IN INFORMATION RETRIEVAL:
RELEVANCE FEEDBACK. نالمكا].

[] [] []∑∑∑∑
∑∑

∗+∗=

∗=

d dd ddd dd dd

d dd dd

ffrrfrEionFitnessPrecis

rfrllFitnessEReca

βα][

][][

2

1

6. Selection operators

To process genetic algorithms operators will be done in each generation on the
best two chromosomes. From the population of chromosomes, the best two
chromosomes that depend on the highest fitness values for precision measure or on
recall measure will be selected. These two chromosomes will be called parent1 and
parent2. These two parents will be used to produce two new offsprings.

7. Crossover or Recombination operators

Generating two new offsprings form the existing population. Offsprings must
have some inheritance from the best chromosomes in the population; crossover will
do that by changing subtree from parent1 with subtree from parent2. Positions for
subtree1 and for subtree2 will be selected randomly, and the position must be Boolean
logical operator such as “AND, OR, XOR, and NOT”.

Single point crossover used in our genetic programming. Index identifier was

assigned for each term and each Boolean operator in a postfix form for each query,
see fig-3.

 XOR

0
AND

AND OR 0
1 4

OR AND
W3 W4 AND W81 4
2 3 5 8

W2 W6 W9 W3
W5 W62 3 5 6
6 7

Fig. 4. Trees in Postfix form with indexing

For parent1, the selected subtree1 random number must not exceed the num-
ber of nodes of parent1. And same must be done for selecting subtree2 random
number for parent2 must not exceed the number of nodes of parent2.

Query Optimization by Genetic Algorithms 131

For example, if we have two random numbers 1 and 4 for subtree1 and sub-
tree2 respectively, and we implement single point crossover process on parent1
and parent2 for trees shown in Figure 3, the new generated offsprings shown in
see Figure 5, after exchange sub trees.

For parent1, the selected subtree1 random number must not exceed the number

of nodes for tree1. And the must be done for selection subtree2 random number for
parent2.

Fig-3: Trees in Postfix form with indexing

For example, if we chose random numbers 1 and 4 for subtree1 and subtree2

respectively, and we implement single point crossover process on parent1 and parent2
for trees shown in fig-3, the new generated offsprings shown in fig-4, after exchange
sub trees.

 XOR

AND 0
0

AND OR AND OR 1 4 6 1

W3 W4 W2 W6W9 W3 AND W8 2 3 5 6 7 8 5 2

W5 W6
3 4

Fig-4: New offsprings after single point crossover.

8. Mutation operators

Mutation, random perturbation in the chromosome representation, is necessary
to assure that the current generation is connected to the entire search space, and it is
necessary to introduce new genetic material into a population that has stabilized level.
[D. H. KRAFT, F. E.PETRY, B. P. BUCKLES, AND T. SADASIVAN. التاريخ
GENETIC ALGORITHMS FOR QUERY OPTIMIZATION IN INFORMATION
RETRIEVAL: RELEVANCE FEEDBACK. المكان]. In our genetic programming,
mutation operator may change one Boolean logical operator by other one. That is for
mutation will be for AND, OR, and XOR Boolean operators.

For each offspring, select random number less than one, if the selected random

number less than mutation value, another selected random number will be drown and
checking if it is on Boolean operator in the offspring, then exchange will process on
it, (i.e. AND will be OR or XOR). Example will be shown in fig-5, where mutation
was not process for offspring1 but done for offspring2. Random if we select 1 to
denote for the subtree position for offspring2, and from offspring2 we get that the
Boolean logical operator is AND, and by random it was changed to OR. The new two
offsprings are shown in fig-5.

Fig. 5. New offsprings after single point crossover.

5.3 Mutation operators

Mutation, random perturbation in the chromosome representation, is necessary
to assure that the current generation is connected to the entire search space,
and it is necessary to introduce new genetic material into a population that has
stabilized level [7]. In our genetic programming, mutation operator may change
one Boolean logical operator by other one. That is for mutation will be for and,
or and Xor Boolean operators.

For each new offspring, the selected random number is less than one. If the
selected random number is less than mutation value, another selected random
number will be drown and checking if it is on Boolean operator in the offspring,
then exchange will process on it, (i.e. and will be or or xor). Example is shown in
Figure 5, where mutation was not process on offspring1 but done on offspring2,
where randomly if we select 1 to denote for the subtree position on offspring2, and
from offspring2 we see that it is a Boolean logical operator and, and randomly
it was changed to or, the new two offsprings are shown in Figure 5.

5.4 Updating Population

Fitness values will be computed for the two generated new offsprings, and after
that the best chromosomes will survive for the next generation. Offsprings will be
replaced by the worst chromosomes in the population, for this the new population

132 Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

size will not be changed, replacing two worst chromosomes by two offsprings if the
new offsprings fitness values exceed any of the chromosomes in the population.

The new population was ready to start next generation. And this will be
repeated until number of generations or until we get the best solution for our
problem.

5.5 Experiments

We developed our genetic program over a testing environment to see the influ-
ence of genetic algorithms on the information retrieval. The environment had
a population from set of Boolean queries. For our program an input data used
Boolean model of a collection of documents and set of Boolean queries as an
initial population, and for execution the genetic program we used:

– Different Collections of documents with variant number of words and docu-
ments.

– Two sets of queries that represent as tree prefix form used as two different
initial populations with fixed size in number of chromosomes (8 individuals).

– The results will be for a one requesting user query
– An initial values was fixed in all experiments are

• Mutation value is 0.2
• α is 0.25
• β is 1.0

– Fixed number of generations are 50 generations

5.6 Limitations of current version

– At this time genetic operators are applied only for Boolean logical operators
and, or and xor. This causes following: if queries in initial population do
not include all the terms we have in the user query, they cannot come into
existence.

– In our implementation, precision fitness value can be greater than 1.0, where
the maximal value of precision is 1.25 that is coming from (α and β), thus
we cannot interpret it as probability.

5.7 Experiment Tests

Our tests was done using user query

w8 orw2,
and we used two different initial populations Q1 and Q2; and they are shown in
table 1, and table 2 respectively.

Query Optimization by Genetic Algorithms 133

Table 1. Initial population Q1.

No. Query

1. (w13 and w8) and(w10 or w4)

2. (w1 and(w8 and w2)) or(w4 or w2)

3. (w1 or w2) and((w5 or w4) and(w3 and w6))

4. (w9 and w14)

5. (w14 and w1)

6. (w2 or w6) or(w8 and w13)

7. (w3 and w4) or((w12 xor w15) and w8)

8. (w1 or w5)

Table 2. Initial population Q2.

No. Query

1. (w13 and w8) and(w10 or w4)

2. (w1 and(w8 and w2)) or(w4 or w2)

3. (w1 or w2) and((w5 or w4) and(w3 and w6))

4. (w9 and w14)

5. (w14 and w1)

6. (w2 xor w8) or(w8 and w13)

7. (w3 and w4) or((w2 or w8) and w8)

8. (w1 or w5)

We mention that in initial population Q1 there is in one query contain a sub
expression

w8 andw2,

and in initial population Q2 there are in three different queries contains three
different sub expressions

w8 andw2, w8 orw2, w8 xorw2.

Our testing of execution for genetic programming was done independently
from other execution results. Three cases were studied. The results of our tests
with different collections (different number of documents and different number
of words/terms). The three cases descriptions are:

– Test case 1: collection of 10 documents, 30 words in collection, maximal
number of different words in a document is 10. Results are shown in table 3.

– Test case 2: collection of 200 documents, 50 words in collection, maximal
number of different words in a document is 50. Results are shown in table 4.

– Test case 3: collection of 5000 documents, 2000 words in collection, maximal
number of different words in a document is 500. Results are shown in table 5.

134 Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

Table 3. Results of test case 1

No. Selection for
Parents de-
pends on

Initial
popula-
tion

Result Fitness
value for
Precision
Recall

1 Precision Q1 (((w8 or w2) or (w13 and w8)) or ((
w8 xor w2) or (w13 and w8)))

1.250000
1.000000

(((w8 or w2) or (w8 or w2)) or (w8

and w2))
1.250000
1.000000

Recall ((w13 or w8) or (w6 or w2)) 1.083333
1.000000

((w13 and w8) or ((w6 or w2) or ((
w13 or w8) or (w6 or w2))))

1.083333
1.000000

2 Precision Q2 ((w8 xor w2) or ((((w13 and w8) or (
w8 xor w2)) or (w8 xor w2)) or (w8

xor w2)))

1.250000
1.000000

((w8 or w2) or ((w13 and w8) and (
w8 or w2)))

1.250000
1.000000

Recall (((w8 xor w2) or (w8 xor w2)) or (
w8 xor w2))

1.250000
1.000000

((w13 and w8) or (w8 xor w2)) 1.250000
1.000000

Query Optimization by Genetic Algorithms 135

Table 4. Results of test case 2

No. Selection for
Parents de-
pends on

Initial
popula-
tion

Result Fitness
value for
Precision
Recall

3 Precision Q1 ((w8 or w2) or ((w2 and w4) or ((w8

or w2) and w1)))
1.250000
1.000000

((w2 and w4) or (((w2 and w4) xor
((((w2 and w4) or (((w4 or w10) and
(w8 and w13)) or (w8 and w13))) and
(w8 and w13)) or (w8 and w13))) and
(w8 and w13)))

1.169580
0.678322

Recall (((w2 or w4) or (((w2 or w4) or (w6

or w2)) or (w6 and w2))) or (w6 and
w2))

1.074290
0.930070

(((w2 or w4) or (((w2 or w4) or (((
w13 and w8) or (w6 or w2)) and (w8

xor w2))) or (w6 or w2))) or (((w13

and w8) or (w6 or w2)) or (w8 xor w2

)))

1.101190
1.000000

4 Precision Q2 ((w13 and w8) or (w8 or w2)) 1.250000
1.000000

((w8 or (w8 or w2)) or ((w13 and w8

) or (w8 xor w2)))
1.250000
1.000000

Recall (((w13 xor w8) or (w8 or w2)) or (w4

and w3))
1.138199
1.000000

((w8 or w2) or (w8 or w2)) 1.250000
1.000000

136 Suhail S. J. Owais, Pavel Krömer, and Václav Snášel

Table 5. Results of test case 3

No. Selection for
Parents de-
pends on

Initial
popula-
tion

Result Fitness
value for
Precision
Recall

5 Precision Q1 ((w13 and w8) and (w13 and w8)) 1.045644
0.182575

(((((w6 and w2) or ((w6 and w2) or (
w8 and w13))) and (((w6 and w2) or (
w8 and w13)) or (w8 and w13))) or ((
w6 or w2) or (w8 and w13))) and (((
w6 and w2) or (w8 and w13)) or (w8

and w13)))

1.084435
0.337739

Recall (w8 or w2) 1.250000
1.000000

((w13 or w8) or (w6 or w2)) 0.913958
1.000000

6 Precision Q2 ((w8 and w2) or (w8 xor w2)) 1.250000
1.000000

(w8 or (w8 or (w8 or w2))) 1.250000
1.000000

Recall ((((w13 and w8) or (w8 or (w8 or w2

))) or (w8 or (w8 or w2))) or (w8 or
w2))

1.250000
1.000000

(((w13 or w8) and (w8 xor w2)) or ((
w13 or w8) or (w8 xor w2)))

1.025921
1.000000

Query Optimization by Genetic Algorithms 137

6 Conclusions

The results of this study suggests that the final population composed of indi-
viduals having the same strength (quality) will have the same precision and
recall values. The best individual result was randomly chosen as best. We con-
clude that the quality of initial population was important to have best result of
genetic programming process, and the less quality of initial population caused
worse results. This could be seen when we chose parents based on precision, and
therefore recall was very small for the large collection.

We concluded that in order to get good results, we choose parents depending
on the recall fitness values than the precision fitness values, but that will increase
the number of Boolean logical operators for the final best results.

For the future work we suggest to use less number of prefix tree by identifying
the Boolean logical operators only without identify index for terms. For select-
ing the best individual with less number of Boolean operators and less number
of terms instead of random selection if we got the final population with same
strength. Modifying our system to work with different Boolean operators (of,
adj, . . . see in [4]), and extend this for fuzzy logic.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
New York, 1999.

2. Freytag, Johann Christoph: A Rule-Based View of Query Optimization. Proceed-
ings of ACM-SIGMOD, 1987, pp. 173-180.

3. Goldberg, David E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, Massachusetts: Addison-Wesley, 1989.

4. Korfhage Robert R.: Information Storage and Retrieval. John Wiley & Sons, Inc.
1997.

5. Melanie M.: An Introduction to Genetic Algorithms. A Bradford Book The MIT
Press 1999.

6. Kim, Won: On Optimizing an SQL-like Nested Query. ACM Transactions on
Database Systems 7, 3 (September 1982), pp. 443-469.

7. Kraft, D.H., Bordogna, G., and Pasi, G.: Fuzzy Set Techniques in Information Re-
trieval, in Bezdek, J.C., Didier, D. and Prade, H. (eds.), Fuzzy Sets in Approximate
Reasoning and Information Systems, vol. 3, The Handbook of Fuzzy Sets Series,
Norwell, MA: Kluwer Academic Publishers, 1999.

8. McGoveran, David: ”Evaluating Optimizers.” Database Programming and Design.
January 1990, pp. 38-49.

9. Salton, G. and Buckley, C.: Terms-Weighting approach in automatic text retrieval.
Information Processing and management, 1988 24(5):513-523.

10. Suhail S. J. Owais.: Timetabling of Lectures in the Information Technology Col-
lege at Al al-Bayt University Using Genetic Algorithms. Master thesis, Al al-Bayt
University 2003, Jordan. (in Arabic).

11. Yao, S. Bing: ”Optimization of Query Algorithms.” ACM Transactions on
Database Systems 4, 2 (June 1979), pp. 133-155.

Author Index

Burda, Michal, 58

Dvořáková, Jana, 69

Gajdoš, Petr, 46
Gurský, Peter, 1

Hynar, Martin, 9, 20, 58

Karban, Tomáš, 103
Krömer, Pavel, 125

Labský, Martin, 84
Lánský, Jan, 32

Martinovič, Jan, 46

Mindek, Marian, 9, 20
Moravec, Pavel, 113

Nemrava, Jan, 94

Owais, Suhail S. J., 125

Praks, Pavel, 84

Snášel, Václav, 125
Svátek, Vojtěch, 84, 94

Šarmanová, Jana, 20, 58
Šváb, Ondřej, 84

Žemlička, Michal, 32

	Comparison of parallel and random approach to a candidate list in the multifeature querying
	Finite State Automata as a Data Storage
	Characteristics of cosymmetric association rules
	Text Compression: Syllables
	Vector model improvement by FCA and Topic Evolution
	Unsupervised clustering with growing self-organizing neural network -- a comparison with non-neural approach
	On classification of XML document transformations
	Multimedia information extraction from HTML product catalogues
	Text mining tool for ontology engineering based on use of product taxonomy and web directory
	Relational Data Mining and GUHA
	Testing Dimension Reduction Methods for Text Retrieval
	Query Optimization by Genetic Algorithms

