
Charles University in Prague, MFF, Department of Software Engineering
Czech Technical University in Prague, FEE, Dept. of Computer Science & Eng.

VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2007 Workshop

Databases, Texts

Specifications, and Objects

2007
http://www.cs.vsb.cz/dateso/2007/
http://www.ceur-ws.org/Vol-235/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

April 18 – 20, 2007
Desná – Černá Ř́ıčka

http://www.cs.vsb.cz/dateso/2007/
http://www.ceur-ws.org/Vol-235/

DATESO 2007
c© J. Pokorný, V. Snášel, K. Richta, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Page count: 147

Publication: 196th

Impression: 150
Edition: 1st

First published: 2007

This proceedings was typeset by PDFLATEX.
Cover design by Pavel Moravec (pavel.moravec@vsb.cz) and Tomáš Skopal.
Printed and bound in Ostrava, Czech Republic by TiskServis Jǐŕı Pustina.

Published by MATFYZPRESS publishing house of Faculty of Mathematics and Physics

Charles University, Ke Karlovu 3, 121 16 Praha 2, Czech Republic as its 196th publi-

cation.

Preface

DATESO 2007, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 18 – 20, 2007 in Desná – Černá Ř́ıčka. This was the 7th an-
nual workshop organized by VŠB-Technical University Ostrava, Department of
Computer Science, FEL ČVUT Praha, Department of Computer Science and
Engineering and MFF UK Praha, Department of Software Engineering. The
DATESO aims for strengthening the connection between this various areas of
informatics. The proceedings of DATESO 2007 are also available at DATESO
Web site http://www.cs.vsb.cz/dateso/2007/
http://www.ceur-ws.org/Vol-235/.

The Program Committee selected 13 papers (11 full papers and 2 posters)
from 23 submissions, based on two independent reviews.

We wish to express our sincere thanks to all the authors who submit-
ted papers, the members of the Program Committee, who reviewed them
on the basis of originality, technical quality, and presentation. We are also
thankful to the Organizing Committee and Amphora Research Group (ARG,
http://www.cs.vsb.cz/arg/) for preparation of workshop and its proceedings.
Special thanks belong to Czech Society for Cybernetics and Informatics for its
support of publishing this issue.

March, 2007 J. Pokorný, V. Snášel, K. Richta (Eds.)

http://www.cs.vsb.cz/dateso/2007/
http://www.ceur-ws.org/Vol-235/
http://www.cs.vsb.cz/arg/

Program Committee

Jaroslav Pokorný (chair) Charles University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Karel Richta Czech Technical University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague
Tomáš Skopal Charles University, Prague

Organizing Committee

Pavel Moravec VŠB-Technical University of Ostrava
David Hoksza Charles University, Prague

Table of Contents

Full Papers

Syllable-Based Burrows-Wheeler Transform . 1
Jan Lánský, Katsiaryna Chernik, Zuzana Vlčková

Updating Typed XML Documents Using a Functional Data Model 11
Pavel Loupal

Genetic Algorithms in Syllable-Based Text Compression 21
Tomáš Kuthan, Jan Lánský

Using XSEM for Modeling XML Interfaces of Services in SOA 35
Martin Nečaský

A Modular XQuery Implementation . 47
Jan Vraný, Jan Žák

A Content-Oriented Data Model for Semistructured Data 55
Tomáš Novotný

Index-Based Approach to Similarity Search in Protein and Nucleotide
Databases . 67
David Hoksza, Tomáš Skopal

Using BMH Algorithm to Solve Subset of XPath Queries 81
David Toth

Shape Extraction Framework for Similarity Search in Image Databases . . 89
Jan Kĺıma, Tomáš Skopal

Inductive Models of User Preferences for Semantic Web 103
Alan Eckhardt

Improvement of Text Compression Parameters Using Cluster Analysis . . . 115
Jiř́ı Dvorský, Jan Martinovič

Posters

Work with Knowledge on the Internet – Local Search 127
Antońın Pavĺıček, Josef Muknšnábl

The Use of Ontologies in Wrapper Induction . 132
Marek Nekvasil

Author Index . 136

Syllable-Based Burrows-Wheeler Transform?

Jan Lánský, Katsiaryna Chernik, and Zuzana Vlčková

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
{zizelevak, kchernik, zuzana.vlckova}@gmail.com

Syllable-based Burrows-Wheeler Transform?

Jan Lánský, Katsiaryna Chernik, and Zuzana Vlčková

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
{zizelevak, kchernik, zuzana.vlckova}@gmail.com

Abstract. The Burrows-Wheeler Transform (BWT) is a compression
method which reorders an input string into the form, which is prefer-
able to another compression. Usually Move-To-Front transform and then
Huffman coding is used to the permutated string. The original method [3]
from 1994 was designed for an alphabet compression. In 2001, versions
working with word and n-grams alphabet were presented. The newest
version copes with the syllable alphabet [7]. The goal of this article is to
compare the BWT compression working with alphabet of letters, sylla-
bles, words, 3-grams and 5-grams.

1 Introduction

The Burrows-Wheeler Transform is an algorithm that takes a block of text as
input and rearranges it using a sorting algorithm. The output can be compressed
with another algorithms such as bzip. To compare different ways of document
parsing and their influence on BWT, we decided to deal with natural units of the
text: letters, syllables and words; and compare these approaches with each other
and also with the methods that divide the text into unnatural units – N-grams.
In our measurements we found out that depending upon the language, words
have 5–6 letters and syllables 2–3 letters in average. Therefore 3-grams were
chosen to conform to the syllable length and 5-grams to correspond to average
words length.

If we want to compare different BWT for various ways of text file parsing, it
is necessary to use an implementation modified only in document parsing; the
rest of compression method will stay unchanged.

Very important BWT parameter is a block size the document is compressed
into; the larger block, the better results. For example, in bzip2 algorithm [14],
the maximum block size is 900 kB. We decided to choose the block size so that
any document up to 5MB could be considered as a single block. This approach
is fairly-minded since e.g. word methods will not be favoured by considering the
document as one block whilst letter methods would split the text into several
blocks.

For our purposes, we had to alter two method’s properties: We modified the
XBW method [3] to be able to compress above all required entities. The XBW
? This research was partially supported by the Program ”Information Society” under

project 1ET100300419.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 1–10, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

2 Jan Lánský, Katsiaryna Chernik, Zuzana Vlčková

transform represents a labeled tree using two arrays, and supports navigation and
search operations by means of standard query operations on arrays. Since this
method was designed for syllable and word compression, it was easy to adjust it
to compress also above remaining entities (letters, 3-grams and 5-grams). Since
this method was intended as XML compression algorithm, we had to suit it on
plain text documents - it was the second modification.

XBW method does not use syllable or word models attributes which predict
a word or syllable type alternation.

In section 2 we try different strategies of document parsing. Section 3 de-
tails XBW method, section 4 describes experiments and their results. Section 5
contains the conclusion.

2 Parsing strategies

We parse an input document into words, syllables, letters, 3-grams and 5-grams.
All above mentioned entity type division examples of string “consists of” are
introduced in the table 1.

The word-based methods require parsing the input document into a stream
of words and non-words. Words are usually defined as the longest alphanumeric
strings in the text while non-words are the remaining fragments.

In [17] the syllable is defined as: “a unit of pronunciation having one vowel
sound, with or without surrounding consonants, and forming all or part of
a word.” We do not need to follow this definition strictly. Therefore we will
use simplified definition [11]: “Syllable is a sequence of speech sounds, which
contains exactly one vowel subsequence.” Consequently, the number of syllables
in certain word is equal to the number of word’s maximum sequences of vowels.

Example 1. For example, the word “wolf” contains one maximal vowel subse-
quence (“o”), so it is one syllable; while word “ouzel” consists of two maximal
vowel sequences - “ou” and “e” – there are two syllables, “ou” and “zel”.

N-grams are sequences of n letters, then 3-gram contains 3 letters, 5-gram is
created by 5 letters, 1-gram is one letter.

Table 1. Examples of string parsing into words, syllables, letters, 3-grams and 5-grams

parsing type parsed text elements

orginal "consists of"

letters "c", "o", "n", "s", "i", "s", "t", "s", " ", "o", "f"

3-grams "con", "sis", "ts ", "of"

5-grams "consi", "sts o", "f"

syllables "con", "sists", " ", "of"

words "consists", " ", "of"

Syllable-Based Burrows-Wheeler Transform 3

3 XBW

We designed an XBW method based on the Burrows-Wheeler transform [3].
This XBW method was partially described in [7]; in this paper, we give a more
detailed description.

The XBW method was not named very appropriately, because it can be
easily mistaken by name xbw used by the authors of paper [5] for XML trans-
formation into the format more suitable for searching. In another article these
authors renamed the transformation from xbw to XBW. Moreover they used it
in compression methods called XBzip and XBzipIndex.

XBW method we designed consists of these steps: 1. replacement of the tag
names, 2. division into the elements (words, syllables or n-grams), 3. encoding
of the dictionary of used elements [10], 4. Burrows-Wheeler transform (BWT),
5. Move to Front transform (MTF), 6. Run Length Encoding of null sequences
(RLE), and 7. Canonical Huffman. The steps are all described also by examples.
Our tests were performed on plain texts, therefore we will not detail this method
with XML support.

3.1 Replacement of the tag names

SAX parser produces a sequence of SAX events processed by a structure coder.
This coder builds up two separate dictionaries for elements and attributes of
encoding.

If a corresponding dictionary contains the processed element or attribute,
it is substituted by an assigned identifier. Otherwise it will be substituted by
the lowest available identifier and put into the proper dictionary. Moreover the
name of the element or attribute will be written to the output just after the new
identifier. It ensures that the dictionaries do not need to be coded explicitly and
can be reconstructed during the extraction using the already processed part.

Example 2. Suppose the input

<note importance="high">money</note>
<note importance="low">your money</note>

Then the dictionaries look like

Element dictionary
EA End-of-Tag
A1 note

Attribute dictionary
E1 importance
E2 empty

and output is A1 E1 high EA money EA A1 E1 low EA your money EA.

3.2 Division into words or syllables

Output of the previous step is divided into words or syllables as described in [7].
The coder then creates a dictionary of basic units (syllables or words). In this
phase, the coder creates a syllable (word) dictionary. If the dictionary contains

4 Jan Lánský, Katsiaryna Chernik, Zuzana Vlčková

a processed basic unit, it is substituted by its identifier. Otherwise, it is added
to the dictionary and assigned a unique identifier. Then all occurrences in the
code are replaced by this identifier. Resulting stream is denoted as S-stream.
This part has two outputs: the S-stream and the dictionary of used basic units.
The dictionary has to be also encoded because of the document reconstruction.

Example 3. Let us continue in the previous example where the syllables in the
dictionary could have the following associations: 01 – high, 02 – mo, 03 – ney,
04 – low, 05 – your. The S-stream is then A1 E1 01 EA 02 03 EA A1 E1 04 EA
05 06 02 03 EA.

3.3 The dictionary encoding

The previous step also generates a dictionary of words or syllables which are
used in the text. TD3 [10] is one of the most effective dictionary compression
methods. It encodes the whole dictionary (represented as a trie) instead of the
separate items stored inside.

Trie compression of a dictionary (TD) is based on the trie representing the
dictionary coding. Every node of the trie has the following attributes: represents
— a boolean value stating whether the node represents a string; count — the
number of sons; son — the array of sons; extension — the first symbol of an
extension for every son.

The latest implementation of TD3 algorithm employs a recursive procedure
EncodeNode3 (Figure 1) traversing the trie by a depth first search (DFS) method.
For encoding the whole dictionary we run this procedure on the root of the trie
representing the dictionary.

An example is given in Figure 2. The example dictionary contains strings
".\n", "ACM", "AC", "to", and "the".

In procedure EncodeNode3 we code only the number of sons and the distances
between the sons’ extensions. For non-leaf nodes we must use one bit to encode
whether that node represents a dictionary item (e.g. syllable or word) or not.
Leafs always represent dictionary items, so it is not necessary to code them.
Differences between extensions of sons are defined as distances between ord
function values of the extending characters. For coding the number of sons and
the distances between them we use gamma and delta Elias codes [4]. (We have
tested other Elias codes too, but the best results were achieved for the gamma
and delta codes). The number of sons and distances between them can reach
the value 0 but standard versions of gamma and delta codes start from 1 —
it means that these codings do not support value 0. Therefore we use slight
modifications of Elias gamma and delta codes: gamma0(x) = gamma(x + 1)
and delta0(x) = delta(x + 1).

Using the ord function we reorder the symbols alphabetically according to
the symbols’ types and their occurrence frequencies typical for a certain lan-
guage. While the distances between the sons are smaller than distances coded
for example by ASCII, they can be represented by shorter Elias delta codes.

Syllable-Based Burrows-Wheeler Transform 5

00 EncodeNode3(node) {

/* encode the number of sons */

01 output->WriteGamma0(count + 1);

02 if (count = 0) return;

/* is the node a string? */

03 if (represents)

04 output->WriteBit(1);

05 else output->WriteBit(0);

06 if (IsKnownTypeOfSons)

07 previous = first(TypeOfSymbol(This->Symbol));

08 else previous = 0;

/* iterate and encode all sons of this node */

09 for(i = 0; i < count; i++) {

/* count and encode the distances between sons */

10 distance = ord(son[i]->extension) - previous;

11 output->WriteDelta0(distance + 1);

/* call the procedure on the given son */

12 EncodeNode3(son[i]);

13 previous = ord(son[i]->extension);

14 }

15 }

Fig. 1. Procedure EncodeNode3

In our example (Figure 2) the symbols 0–27 are reserved for lower-case letters,
28–53 for upper-case letters, 54–63 for digits and 64–255 for other symbols.

Additional improvement is based on the knowledge of a syllable type that is
determined by the first one or two letters of the syllable. If a string begins with
a lower-case letter (lower-word or lower-syllable), the following letters must be
lower-case too. In a trie every son of a node representing lower-case letter must
be lower-case letter as well.

The same situation comes on for other-words and numeric-words: if a string
begins with an upper-case letter, we must examine the second symbol to rec-
ognize the type of the string (mixed or upper). In our example (Figure 3.3) we
know that all sons of nodes ’t’, ’o’, ’h’, and ’e’ are lower-case letters.

In this ordering (described by the function ord), each symbol type is given
an interval of potential order. Function first returns the lowest orders available
for each given symbol type.

Each first node (son) has its imaginary left brother having default value 0.
If the syllable type is defined, it is possible to set the imaginary brother’s value
to the corresponding value of first. It lowers the distance values (and shortens
their codes) of the mentioned nodes.

6 Jan Lánský, Katsiaryna Chernik, Zuzana Vlčková

λ

o 3

e 0

?

h 6

?

t 1

M 33

?

C 34

?

A 30

?

\n 76

?

. 66

�
�

�
�
�

�)

P
P
P
P
P
Pq

�
�

�
�

�
�)

Fig. 2. Example of a dictionary for TD3

Take the node labeled ‘t’ in Figure 2 to describe the coding procedure Enco-
deNode3. First we encode the number of its sons. The node has two sons therefore
we write gamma0(2) = 011. By writing a bit 0 we denote that the dictionary does
not containt the processed word (string “t”). The value of the first son of ’t’
is encoded as a distance between its value 3 and zero by delta0(3− 0) = 01100.
Then the first subtrie of node ’t’ is encoded by a recursive call of the encoding
procedure on the first son of the actual node.

Table 2. The output: 8 / E1 06 01 02 02 E1 04 05 EA EA A1 A1 03 03

01 02 03 EA A1 E1 04 05 06 02 03 EA A1 E1
02 03 EA A1 E1 01 02 03 EA A1 E1 04 05 06
02 03 EA A1 E1 04 05 06 02 03 EA A1 E1 01
03 EA A1 E1 01 02 03 EA A1 E1 04 05 06 02
03 EA A1 E1 04 05 06 02 03 EA A1 E1 01 02
04 05 06 02 03 EA A1 E1 01 02 03 EA A1 E1
05 06 02 03 EA A1 E1 01 02 03 EA A1 E1 04
06 02 03 EA A1 E1 01 02 03 EA A1 E1 04 05

A1 E1 01 02 03 EA A1 E1 04 05 06 02 03 EA

A1 E1 04 05 06 02 03 EA A1 E1 01 02 03 EA
E1 01 02 03 EA A1 E1 04 05 06 02 03 EA A1
E1 04 05 06 02 03 EA A1 E1 01 02 03 EA A1
EA A1 E1 01 02 03 EA A1 E1 04 05 06 02 03
EA A1 E1 04 05 06 02 03 EA A1 E1 01 02 03

3.4 Burrows-Wheeler transform

In a BWT step we transform the S-stream into a “better” stream. The “bet-
ter” stream means achieving some better final compression ratio. Obviously the

Syllable-Based Burrows-Wheeler Transform 7

transform should be reversible, otherwise we could lose some information. Specif-
ically we achieve a partial grouping of the same input characters. This process
requires sorting of all the step input permutations. In this certain prototype we
do not use an effective algorithm described in [13] but a simpler C/C++ qsort
function. The use of more sophisticated algorithm would lower the compression
time but would not affect the compression ratio. We realize that time and spatial
complexity is markedly worse as in optimal case. Since in optimal case the order
of single elements can be different, we do not mention the time complexity in
the text, it would be confusing.

Suppose we have a sorted matrix of all input permutations: the transform
output is then composed by its last column and by the column index of input
in this matrix (Table 2).

3.5 Move to Front transform

Then the output stream of BWT is transformed by another transformation step
– MTF [1]. This step translates text strings into a sequence of numbers. Suppose
a numbered list of alphabet elements, then MFT reads these input elements and
writes their list order. As soon as the element is processed it is moved up to the
front of the list.

Example 4.
alphabet: 01 02 03 04 05 06 A1 E1 EA
string: E1 06 01 02 02 E1 04 05 EA EA A1 A1 03 03
output: nothing

alphabet: 03 A1 EA 05 04 E1 02 01 06
string:
output: 76230356808080
The output of MTF phase is “76230356808080”.

3.6 Run Length Encoding of null sequences

One MFT step may generate long sequences of zeroes (null sequences). If success-
ful, the RLE step shrinks these null sequences and replaces them with a special
symbol representing a null sequence of a given length. Finally the output is
a stream of numbers and the special symbols.

Unfortunately, our example does not show a proper use of RLE. Therefore
we will alter the problem and replace the string “02 01 00 00 00 03 00 07 00 00”
by “02 01 N3 03 00 07 N2”.

3.7 Canonical Huffman

After the RLE step the stream is encoded by a canonical Huffman code [12].
Huffman coding is based on assigning shorter codes to more frequent characters
then to characters with less frequent appearance. In our example, “76230356808080”
will have assigned the following codes:

8 Jan Lánský, Katsiaryna Chernik, Zuzana Vlčková

Example 5.
0 - 00, 2 - 110, 3 - 010, 5 - 1110, 6 - 011, 7 - 1111, 8 - 10
The output is then: 1111 011 110 010 00 010 1110 011 10 00 10 00 10 00.

4 Experiments

We compared the compression effectivity using BWT of letters, syllables, words,
3-grams and 5-grams. Testing procedures proceeded on commonly used text files
of different sizes (1 kB - 5 MB) in various languages: English (EN), Czech (CZ),
and German (GE).

4.1 Testing data

Each of tested languages (EN, CZ, GE) had its own plain text testing data.
Testing set for Czech language contained 1000 random news articles selected
from PDT [20] and 69 books from eKnihy [15]. Testing set for English contained
1000 random juridical documents from [19] and 1094 books from Gutenberg
project [16]. For German, we used 184 news articles from Sueddeutche [18] and
175 books from Gutenberg project [16].

4.2 Results

The primary goal was to compare the letter-based compression, syllables and
words. For files sized up to 200 kB, the letter-based compression appears to
be optimal; for files 200 kB - 5 MB syllable-based compression is the most
effective. Also used language affects the results. English has a simple morphology:
in large documents the difference between words and syllables is insignificant.
In languages with rich morphology (Czech, German) words are still about 10%
worse then syllables, even on the largest documents. Language type influence on
compression is detailed in [11].

As the second aim we tried to compare the syllable-based compression with
3-gram-based and word-based compression with 5-gram-based compression. Syl-
lables as well as words are natural language units therefore we supposed using it
to be more effective than using 3-grams and 5-grams. These assumptions were
confirmed. Natural units were the most effective for small documents (20 - 30
%), by increasing the document size efficiency falls to 10 - 15 % for documents
of size 2 - 5 MB.

5 Conclusion

In this paper, we compare experimentally the compression efficiency of Burrows-
Wheeler transform by letters, syllables, words, 3-grams and 5-grams, using the
XBW compression algorithm. We test common plain text files of different sizes
(1kB – 5MB) in various languages (English, Czech, German). BWT block con-
tains the whole document.

Syllable-Based Burrows-Wheeler Transform 9

Table 3. Comparision of different input parsing strategies for Burrows-Wheeler trans-
form. Values are in bits per character.

— File size 100 B 1 kB 10 kB 50 kB 200 kB 500 kB 2 MB
Lang. Method 1 kB 10 kB 50 kB 200 kB 500 kB 2MB 5 MB

CZ Symbols 5.715 4.346 3.512 3.200 2.998 2.846 —–
CZ Syllables 6.712 4.996 3.765 3.280 3.003 2.825 —–
CZ Words 7.751 6.111 4.629 3.871 3.476 3.149 —–
CZ 3-grams 8.539 6.432 4.629 3.851 3.463 3.166 —–
CZ 5-grams 10.104 8.415 6.566 5.448 4.796 4.265 —–

EN Symbols 5.042 3.018 2.552 2.647 2.513 2.336 2.066
EN Syllables 5.974 3.267 2.647 2.685 2.486 2.282 1.996
EN Words 6.323 3.651 2.969 2.944 2.668 2.382 2.014
EN 3-grams 7.740 4.571 3.421 3.148 2.823 2.530 2.136
EN 5-grams 9.358 6.293 4.877 4.367 3.769 3.246 2.530

GE Symbols 4.545 3.853 2.914 2.629 2.491 2.323 2.416
GE Syllables 5.591 4.671 3.201 2.724 2.505 2.295 2.354
GE Words 6.343 5.491 3.679 3.119 2.865 2.545 2.608
GE 3-grams 6.813 5.583 3.760 3.117 2.820 2.525 2.519
GE 5-grams 8.545 7.429 5.324 4.320 3.744 3.237 3.004

Comparing the letter-based, syllable-based and word-based compression, we
find out that character-based compression is most suitable for small files (up to
200 kB) and syllable-based compression for files of size 200 kB – 5 MB (see Table
3, the compress ratio in the table is presented in bites per byte (bpc)).

The compression using natural text units like words or syllables is 10–30%
better than compression with 5-grams and 3-grams.

To achieve the results introduced in this article, we use compression algorithm
XBW implemented mainly for testing purposes. Our next goal is to improve this
program for practical use, e.g. time complexity advance (faster sorting algorithm
in BWT [13], splay trees for MTF [2]) or UTF-8 encoding support.

References

1. Arnavut, Z.: Move-to-front and inversion coding. Data Compression Conference,
IEEE CS Press, Los Alamitos, CA, USA (2000) 193–202.

2. Bentley, J. L., Sleator, D. D., Tarjan, R. E., Wei, V. K.: A locally adaptive data
compression scheme. Communications of the ACM, 29(4):320-330, April 1986.

3. Burrows, M., Wheeler, D. J.: A Block Sorting Loseless Data Compression Algorithm.
Technical report, Digital Equipment Corporation, Palo Alto, CA, U.S.A (2003).

4. Elias, P.: Universal codeword sets and representation of the integers. IEEE Trans.
on Information Theory, Vol. 21, (1975) 194–203.

5. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. Proc. 46th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’05), (2005) 184-193.

6. Ferragina, Manzini, G., Muthukrishnan, S.: Compressing and Searching XML Data
Via Two Zips. Proc. WWW 2006, Edinburgh, Scotland. (2006) 751–760.

10 Jan Lánský, Katsiaryna Chernik, Zuzana Vlčková

7. Galambos, L., Lansky, J., Chernik, K.: Compression of Semistructured Documents.
In: International Enformatika Conference IEC 2006, Enformatika, Transactions on
Engineering, Computing and Technology, Volume 14, (2006) 222–227

8. Isal, R.Y.K., Moffat, A.: Parsing Strategies for BWT Compression. Data Compres-
sion Conference, IEEE CS Press, Los Alamitos, CA, USA (2001) 429-438.

9. Isal, R.Y.K., Moffat, A.: Word-based Block-sorting Text Compression. Proc. 24th
Australasian Computer Science Conference, Gold Coast, Australia, (2001) 92–99

10. Lansky, J., Zemlicka, M.: Compression of a Dictionary. In: Snasel, V., Richta, K.,
and Pokorny, J.: Proceedings of the Dateso 2006 Annual International Workshop on
DAtabases, TExts, Specifications and Objects. CEUR-WS, Vol. 176, (2006) 11-20

11. Lansky, J., Zemlicka, M.: Text Compression: Syllables. In: Richta, K., Snasel, V.,
Pokorny, J.: Proceedings of the Dateso 2005 Annual International Workshop on
DAtabases, TExts, Specifications and Objects. CEUR-WS, Vol. 129, (2005) 32–45

12. Moffat, A., Turpin, A.: On the implementation of minimum redundancy prefix
codes. IEEE Trans.Comm. 45(1997), 1200–1207

13. Seward, J.: On the Performance of BWT Sorting Algorithms. DCC, IEEE CS
Press, Los Alamitos, CA, USA (2000) 173.

14. Seward, J.: The bzip2 and libbzip2 official home page. http://sources.redhat.
com/bzip2/

15. e-books. http://go.to/eknihy
16. Project Gutenberg. http://www.promo.net/pg
17. Compact Oxford English Dictionary. http://www.askoxford.com
18. Sueddeutsche. http://www.sueddeutsche.de
19. California Law. http://www.leginfo.ca.gov/calaw.html
20. The Prague Dependency Treebank. http://ufal.mff.cuni.cz/pdt/

Updating Typed XML Documents Using a
Functional Data Model

Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

loupalp@fel.cvut.cz

Updating Typed XML Documents Using a

Functional Data Model

Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

loupalp@fel.cvut.cz

Abstract. We address a problem of updating XML documents having
their XML schema described by a Document Type Definition (DTD)
without breaking their validity. We present a way how to express con-
structs available in DTD in a functional data model and propose algo-
rithms for performing insert, update and delete operations. After that we
embed the update capability into an existing query language for XML.
This paper thus outlines the whole ”life cycle” of the approach from the
problem analysis to its implementation.

1 Motivation and Problem Statement

During our work on a functional framework for querying XML – XML-λ – we
identified a need for extending the language with support of data modification
operations. Our aim is to develop an approach similar to the SQL language for
relational databases, i.e. have an ability both to query and update underlying
data.

With respect to our aim we set up basic requirements for our approach. First,
we always consider typed data (this is a natural requirement because of the fact
that our framework is based on a type system). At this stage we use DTD
for constraining document validity. Second, we have already a query language
designed. It makes sense to extend this language in a ”logical” way with update
operations. By the term ”logical” we mean the utilization of existing constructs
as sets, existing type system and the idea of functional approach in general.

The paper is structured as follows: Section 2 lists existing approaches for up-
dating XML data and discusses their contribution. In Section 3 we briefly outline
the concept of the functional framework we use, its data model and the query
language that is used for implementing the proposal. We discuss the problem in
Section 4 where we show our solution. Section 5 deals with enriching the syntax
of our query language with update operations. In Section 6 we conclude with
ideas for future work.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 11–20, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

12 Pavel Loupal
2 Loupal, P.

2 Languages for Updating XML

By the term updating XML we mean the ability of a language to perform mod-
ifications (i.e. insert, update and delete operations, etc.) over a set of XML
documents.

Since the creation of the XML in 1998 there have been many efforts to develop
various data models and query languages. A lot of time has also been spent on
indexing and query optimization. On the other hand the problem of updating
XML gains more interest in few past years. Yet there seems to be not a complete
solution for this problem.

Existing papers dealing with updating XML are mostly related to XQuery [2]
(and the need for having updates in XQuery is also considered as one of the most
important topics in the further development of the language [4]). Lehti [7] pro-
poses an extension to XQuery that allows all update operations but does not care
about the validity of the documents. Tatarinov, et al. [11] also extends XQuery
syntax with insert, update and delete operations and shows the implementation
of storage in a relational database system. Benedikt, et al. [1, 10] deals in deep
with the semantics of updates in XQuery.

For the sake of completeness we should not omit XUpdate [6] – a relatively
old proposal that takes a different way. It uses XML-based syntax for describing
update operations. This specification is probably less formal than those previous
but it is often used in praxis.

Considering previous works we can deduce that there are common types
of operations for performing modifications that are embedded in a language –
delete, update, insert before or insert after. This seems to be a sufficient base for
ongoing work. None of those proposals but deals with the problem of updating
typed data and thus it makes sense to put some effort into studying of this
problem. The evolution process around XML leads to use of types so it makes
sense to work on this problem in the world of typed XML documents.

3 XML-λ Framework

XML-λ is a proposal published in 2001 by Pokorný [8, 9]. In contrast to W3C
languages it uses functional data model instead of tree- or graph-oriented model.
The primary motivation was to see XML documents as a database that conforms
to some XML schema (defined, for example, by DTD).

The framework is based on type system theory – it can be informally said
that first a “base” type system Tbase is defined then a regular type system Treg

that extends Tbase with regular types is induced. Upon this the Treg is enriched
with types corresponding to an XML schema and the TE type system is defined.
Over such type system we define a query (and update) language based on simply
typed lambda calculus.

Updating Typed XML Documents Using a Functional Data Model 13
Updating Typed XML Documents Using a Functional Data Model 3

3.1 Type System Introduction

Type system is built on base B – a set containing finite number of base types
S1, . . . , Sk (k ≥ 1). Type hierarchy is then created by following inductive defini-
tion:

Definition 1. Let B is a set of primitive types S1 . . . Sn, k ≥ 1. Type System
Tbase over base B is the least set containing types given by 1.-4.

1. base type: each member of B is type over B
2. functional type: if T1 and T2 are types over B, then (T1 → T2) is also a type

over B
3. n-tuple type: if T1, . . . , Tn (n ≥ 1) are types over B, then (T1, . . . , Tn) is type

over B
4. union type: if T1, . . . , Tn (n ≥ 1) are types over B, then (T1 + . . . + Tn) is

type over B

Subsequently we define a regular type system Treg that extends type system
Tbase with regular constructs:

Definition 2. Let B= {String,Bool}, let NAME be a set of names. Type Sys-
tem Treg is the least set containing types given by 1.-6.

1. Every member of the base B is an (primitive) type over B.
2. named character data: Let tag ∈ NAME. Then tag : String is an (elementary)

type over B,
tag : is an (empty elementary) type over B.

3. Let T be a group type or named character data. Then

– zero or more: T∗ is a type over B.
– one or more: T+ is a type over B.
– zero or one: T? is a type over B.

4. alternative: Let T1 and T2 be types. Then (T1|T2) is a type over B.
5. sequence: Let T1, . . . , Tn be types. Then (T1, . . . , Tn) is a type over B.
6. named type: Let T be a type given by a step from 3.-5. Let tag ∈ NAME.

Then tag : T is a type over B.

3.2 Binding Types to XML

Having the Treg type system we have to extend it to be able to work with XML
data. We build the type system TE induced by Treg. Key idea is to define abstract
items that are particular XML elements or attributes with some content and also
define a set containing all abstract items within an XML instance – E.

Definition 3. Let Treg over base B be a type system from definition 2 and E is
the set of abstract items. Then type system TE induced by Treg is the least set
containing type given by this rule:

Let tag : T ∈ Treg. Then TAG : T is a member of TE. (Replacement of all
tags in tag : T by uppercase version)

14 Pavel Loupal
4 Loupal, P.

With types from TE we can consider functional types for extracting data
values from elements (via abstractions and projections) with two ways

1. for simple element: if tag : String ∈ Treg, then (E → tag : String) ∈ TE

2. for compound element: if tag : T ∈ Treg, then (E → T ′) ∈ TE

Note also that in TE we can express attributes in the same way as XML
elements – as functions.

3.3 Query Language Construction

Typical query has the query part – an expression to be evaluated over data –
and the constructor part that wraps query result and forms the XML output.
XML-λ’s query language is based on λ-terms defined over the type system TE

as shown in Definition 4.
Main constructs of the language are variables, constants, tuples, use of pro-

jections and λ-calculus operations – applications and abstractions. Tagged terms
might be used for declaring functions. Syntax of this language is similar to
λ-calculus expression i.e. λ . . . (λ . . . (expression) . . .). In addition, there are also
typical constructs such as logical connectives, constants or comparison predi-
cates.

Language of terms is inductively defined as the least set containing all terms
created by application of following rules:

Definition 4. Let T, T1, . . . , Tn, n ≥ 1 be members of Tbase. Then

1. variable: each variable of type T is a term of type T

2. constant: each constant (member of F) of type T is a term of type T

3. application: if M is a term of type ((T1, . . . , Tn) → T) and N1, . . . , Nn are
(in the same order) types T1, . . . , Tn, then M(N1, . . . , Nn) is a term of type
T

4. λ-abstraction: if x1, . . . , xn are distinct variables of types T1, . . . , Tn and M

is a term of type T , then λx1, . . . , xn(M) is a term of type ((T1, . . . , Tn) → T)
5. n-tuple: if N1, . . . , Nn are terms of types T1, . . . , Tn, then (N1, . . . , Nn) is a

term of type (T1, . . . , Tn)
6. projection: if (N1, . . . , Nn) is a term of type (T1, . . . , Tn), then N1, . . . , Nn

are terms of types T1, . . . , Tn

7. tagged term: if N is a term of type NAME and M is a term of type T then
N : T is a term of type (E → T).

3.4 Query Example

For our purposes we use the notoriously known bibliography example DTD from
the XML Query Use Cases [5] document. We also consider XML data provided
in the same document.

A query returning all books published by ”Addison-Wesley” is in XML-λ
expressed as shown in Figure 1.

Updating Typed XML Documents Using a Functional Data Model 15
Updating Typed XML Documents Using a Functional Data Model 5

xmldata("bib.xml")

lambda b (/book(b) and b/publisher = "Addison-Wesley")

Fig. 1. An example query written in XML-λ

3.5 Data Model Summary

Previous sections outline the definition of type system TE that we use for mod-
elling types in an XML schema. This means that for each DTD we can con-
struct a particular type system of respective types. In the Language of terms
we propose a mechanism based on lambda calculus operations (applications and
abstractions) combined with projections to work with XML documents.

The most important idea in the framework is the fact that even the small-
est piece of information in an XML document (e.g. an attribute of element
containing just a PCDATA value) is modelled as a partial function that as-
signs a value for exactly one e ∈ E. For example, having an XML element
<phone>+420-800123456</phone> there is a function phone(e) that for ex-
actly one e ∈ E returns value +420-800123456. For more complex types, e.g.
<!ELEMENT author (last, first)> the result of the function is a Cartesian
product E × E.

In XML-λ we model each XML document by a set of items E where each
e ∈ E is of type TITEM . TITEM is a type consisting of a couple (t : TY PE, uid :
INT); TY PE ∈ T and uid is an integer value for maintaining order of items
in the set. Note that some types in a particular type system can have related
information attached (each item of type PCDATA has attached a value of the
item – its content).

In following text we consider following semantic functions with informal
meaning as summarized in following table:

Semantic Function Behaviour

parent(e) For an e ∈ E return its parent item
type(e) For an e ∈ E return its type t (t ∈ T)
application(e, t) Executes an application (rule 3 in Definition 4)

of t-object to the e item. In general it returns a
Cartesian product of E × . . . × E

projection(n-tuple, t) Retrieves all items of type t from given n-tuple.
childTypes(t) Retrieves an list of types (sorted by document or-

der) that might be contained in the result of ap-
plication of a t-object

For further usage we present an algorithm of traversing a fragment of XML
data utilizing our functional framework. The algorithm traverse(E, e, op) takes
three parameters, E – set of items (this represents an XML document in our

16 Pavel Loupal
6 Loupal, P.

model) and e – start-up item for traversing, op – an operation to be performed
on each node.

ALGORITHM traverse(E, e, op)

1: Initialize stack S;

2: Mark e as NEW; Push e to stack S;

3: while (any NEW or OPEN node in S)

4: Pop i from S; Mark i as OPEN;

5: Type t = type(i);

6: n-tuple nt = application(i, t);

7: List_of_types lt = childTypes(t);

8: if lt is String

9: op(i);

10: Mark i as CLOSED;

else

11: For each type in lt

12: n-tuple nt = application(i, type);

13: Mark all items as NEW and push to S;

4 Updating Typed Documents

Document Type Definition (DTD) [3] is a syntactic way how to describe a valid
XML instance. We can break all DTD features into disjoint categories:

1. Elements constraints – Specify the type of an element content. Is one of
EMPTY, ANY, MIXED or ELEMENT_CONTENT,

2. Structure constraints – The occurrence of elements in a content model. Op-
tions are exactly-one, zero-or-one, zero-or-more, one-or-more

3. Attributes constraints – #REQUIRED, #IMPLIED, #FIXED, ID, IDREF(S)

Each update operation can or cannot affect any construct from the particular
DTD. Considering a transactional behaviour we can see two violation scenarios:

1. Fully consistent. After each operation (insert, update or delete) the instance
remains valid. This means that we have to define a complete set of operations
that are strong enough to perform all possible updates.

2. Partially consistent. In this mode we allow partial inconsistency i.e. we con-
sider the whole query as an atomic operation. Therefore we do not require
to have atomic insert,update and delete operations but we have to ensure
that at the end of the processing the instance is valid. In general it means
revalidation of the document being updated.

In our approach we use the first scenario and declare all operations as fully
consistent.

With respect to abilities of the existing XML-λ framework we have to extend
this framework with features allowing us to check constraints available in DTD.

Updating Typed XML Documents Using a Functional Data Model 17
Updating Typed XML Documents Using a Functional Data Model 7

The cornerstone of the framework is its type system (it is the basis of types we
can use). For modelling DTD constraints we propose four sets of types, where
all types come from the type system, i.e. T ∈ TE .

1. Tunmodifable is a set of types that cannot be modified. This set contains types
for attributes declared as #FIXED and element types with EMPTY content
model.

2. Tmandatory is a set of types that must not be removed from a document
instance because it would break the DTD constraints. This set contains
attribute types with #REQUIRED declaration and element types for those T

iff all occurrences of T are exactly-one.
3. Treferencing is a set of types that may reference another type, for DTDs those

are attributes declared as IDREF or IDREFS.
4. Treferenced is a set of types that may be referenced by another type, for

DTDs those are attributes declared as ID.

These sets we use in our semantics for particular update operations. We
will use access functions isUnmodifable(e), isMandatory(e), isReferencing(e) and
isReferenced(e) that check the containment of item’s type in respective sets.

In general the semantics of all operations consists of two parts: (1) Check if
the operation is permitted regarding the DTD constraints and (2) Execution of
given update operation. Following sections discuss the semantics of delete, insert
and update operations in detail.

4.1 Delete

Deletion is a operation of removing given part of XML data (i.e. element or
attribute) with its potential subelement(s). We can see the function with a sig-
nature DELETE(e) where e : t ∈ E, t ∈ T.

With respect to validity issues there are two scenarios where this operation
is denied:

1. e is an attribute and is declared as #REQUIRED or #FIXED
2. e is an element with exactly-one or one-or-more occurrence

In our framework it means checking whether the type of item being deleted is
a member of Tmandatory or Tunmodifiable sets. After that we have to ensure that
by deleting of the item we do not delete the last remaining item with exactly-
one or one-or-more occurrence. Following algorithm outlines conceptually the
operation.

Algorithm delete(E, e) takes two parameters, E– set of items (this represents
an XML document in our model) and e – the item to be deleted. It returns true
if the item has been deleted or false if the delete has been denied.

ALGORITHM delete(E, e):

1: if (isMandatory(e) or isUnmodifieble(e))

2: return false;

18 Pavel Loupal
8 Loupal, P.

else

3: p = parent(e);

4: List_of_types pt = childrenTypes(p);

5: if (type(e) in pt) is exactly-one

6: return false;

7: if (type(e) in pt) is one-or-more and

8: data contains at least 1 occurrence of item with type(e)

9: return false;

else

10 traverse(E, e, delete);

11: return true;

Informally we can imagine the operation as a subset subtraction Eresult =
E \ e with ongoing renumbering of remaining items to keep document order.
Maintenance of potential references in document (attributes of type ID, IDREF
and IDREFS) that should take place in the traverse function. For now we
consider it as being out scope of this paper.

4.2 Insert

By the insert operation we mean adding an XML fragment into the target doc-
ument. By the fragment we understand an element, an attribute or an XML
subtree. Insert is more complicated operation than delete because there are more
conditions and restrictions to be checked. We write the statement as

INSERT e1 (AFTER | BEFORE | AS CHILD) e2;

where e1 : T1, e2 : T2 ∈ E; T1, T2 are types. Note that e1 must be a valid
expression in T , i.e. it must be of a type from TE . We can see the operations as
finsert(F,E1,Ei) = Eresult where F ∈ TE and Eresult = E1 ∪ Ei

Algorithm insert after(E, e1, e2) takes three parameters, E – set of items,
e1 – the item to be inserted (e1 6∈ E) and e2 – the context item. It returns true
if the item has been inserted or false if the insert has been denied.

ALGORITHM insert_after (E, e1, e2):

1: p = parent(e1);

2: List_of_types pt = childrenTypes(p);

3: if (type(e1) not in pt)

4: return false;

5: if (following type of e2) is exactly-one and

6: item with the same type already exists in n-tuple

7: return false;

8: Put item into E and perform uid renumbering;

9: return true;

Updating Typed XML Documents Using a Functional Data Model 19
Updating Typed XML Documents Using a Functional Data Model 9

4.3 Update

Update operation means replacing one item by another with the same type.
We can write the signature of this operation as UPDATE e1 WITH e2; where
e1 : T1, e2 : T2 ∈ E; T1 = T2 are types.

Because of the fact that we require both expressions to be of the same type
there cannot occur any validation conflict (both of them are valid before the
operation). The algorithm for performing update is then straightforward.

5 Implanting Updates into the Language

First implementation of the XML-λ language was developed in [12]. It is basically
a query language without any updating capability. We will extend this language
with operations as shown above.

With respect to the concept of the language we declare all operations as
tagged terms. This means that we consider each function as a term of functional
type (E → T). Consequently we define the semantics for all operations.

Following fragment of EBNF shows a concept of including all operations into
the language

[1] Query ::= Options (OpUpdateList | OpQuery)

[2] OpQuery ::= ConstructorPart QueryBody Eof

[3] OpUpdateList ::= { OpUpdate }+

[4] OpUpdate ::= { Delete SubQuery |

Insert Expr (after|before|as child of) SubQuery |

Update SubQuery With Expr }

Note that the non-terminal SubQuery (rule [18] in [12, p.55]) presents a
lambda term that may return set of items. There is also a significant advantage
of using non-terminals SubQuery and Expr. In general these can be function
calls (even user-defined). This is a difference with XUpdate, where only XPath
expressions are used.

An example of delete operation removing all books published by ”Addison-
Wesley” is then written as follows

xmldata("bib.xml")

delete(lambda b (/book(b) and b/publisher = "Addison-Wesley"))

The insert operation that adds a new element author after the first author of a
book specified by its name we write as

xmldata("bib.xml")

insert-after(lambda a (

/book(b) and b/title="TCP/IP Illustrated" and a=b/author[1]),

"<author><last>Richta</last><first>Karel</first></author>"))

An example of the delete operation is obvious and is omitted.

20 Pavel Loupal
10 Loupal, P.

6 Conclusion and Future Work

We have shown a proposal for updating XML data constrained by a Document
Type Definition. We present a functional framework for querying XML that is
extended by structures for expressing DTD semantics. By enriching the query
language with modification operations – inserts, deletes and updates – we obtain
a language suitable both for querying and updating XML documents.

There is still a lot of future work ahead. To get a complete framework we
have to finalize the issue with references within documents (IDs and IDREFS).
This is only a technical problem how to formalize the algorithm to be executed
to keep the documents consistent and valid. Another questionable area are the
dependencies of multiple update operations in one ”query” statement. In this
paper we do not solve any potential conflicts.

Probably the biggest challenge for future work is replacement of DTD by
XML Schema. This means restructuring the type systems Treg and TE and re-
developing the idea of constraint sets.

References

1. M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Adding updates to XQuery:
Semantics, optimization, and static analysis. In XIME-P 2005, 2005.

2. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Simeon. XQuery 1.0: An XML Query Language, September 2005.
http://www.w3.org/TR/xquery/.

3. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (XML) 1.0 (third edition), February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

4. D. Chamberlin. XQuery: Where do we go from here? In XIME-P 2006, 2006.
5. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML

Query Use Cases, September 2005. http://www.w3.org/TR/2005/WD-xquery-
use-cases-20050915/.

6. A. Laux and L. Martin. XUpdate – XML Update Language, 2000. available online
at http://xmldb-org.sourceforge.net/xupdate/index.html.

7. P. Lehti. Design and implementation of a data manipulation processor for an XML
query language. Master’s thesis, Technische Universitaet Darmstadt, 2001.

8. J. Pokorný. XML functionally. In B. C. Desai, Y. Kioki, and M. Toyama, editors,
Proceedings of IDEAS2000, pages 266–274. IEEE Comp. Society, 2000.

9. J. Pokorný. XML-λ: an extendible framework for manipulating XML data. In
Proceedings of BIS 2002, pages 160–168, Poznan, 2002.

10. G. M. Sur, J. Hammer, and J. Siméon. An XQuery-Based Language for Processing
Updates in XML. In PLAN-X 2004, 2004.

11. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In ACM

SIGMOD 2001, 2001.
12. P. Šárek. Implementation of the XML lambda language. Master’s thesis, Dept. of

Software Engineering, Charles University, Prague, 2002.

Genetic Algorithms in Syllable-Based
Text Compression?

Tomáš Kuthan and Jan Lánský

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

tkuthan@gmail.com, zizelevak@gmail.com

Genetic algorithms in syllable based text
compression ?

Tomáš Kuthan and Jan Lánský

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

tkuthan@gmail.com, zizelevak@gmail.com

Abstract. Syllable based text compression is a new approach to com-
pression by symbols. In this concept syllables are used as the compres-
sion symbols instead of the more common characters or words. This new
technique has proven itself worthy especially on short to middle-length
text files. The effectiveness of the compression is greatly affected by the
quality of dictionaries of syllables characteristic for the certain language.
These dictionaries are usually created with a straight-forward analysis
of text corpora. In this paper we would like to introduce an other way of
obtaining these dictionaries – using genetic algorithm. We believe, that
dictionaries built this way, may help us lower the compress ratio. We will
measure this effect on a set of Czech and English texts.

1 Introduction

In the early times of the computer age memory and storage capacity were highly
limited and extremely expensive. This brought great pressure on storing the data
as dense as possible and therefore created ideal conditions for data compression.
But due to the fascinating development of computers, we have been witness-
ing for several last decades, storage capacity grew rapidly while it’s price went
down in a similar manner. Common hard disk drive of today’s PC could easily
carry all the code of all the computers in the early 70’s. It could seem, that in
this situation there is no need for effective compression. But together with the
sources the demand raised as well. The amount of data companies deal with and
want to or need to archive is unimaginable. Every percentage spared has it’s
immediate value in money. Another good example is networking. The dynamics
of the growth of the network capacity does not even resemble the numbers we
are used to by storage. It is very reasonable to transport data compressed to
save the bandwidth.

Now that we explained the importance of data compression, we will try to
specify the structure of the the coded files. Generally we recognize two types of
files - binary and text files. There are many algorithms for binary compression
including the whole are of lossy compression, but this concern is beyond the area
? This research was partially supported by the Program ”Information Society” under

project 1ET100300419.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 21–34, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

22 Tomáš Kuthan, Jan Lánský

of interest of this paper. The structure of a text file depends on it’s language. We
may assume, that two documents in the same language have similar structure.
Two different languages may have several similar characteristics. We may ask,
whether both languages have rich morphology, or whether they for example both
have fixed word-order. In languages with rich morphology the words usually
consist of several syllables. Here syllables play the role of natural transition
between letters and words.

The size of the file is an other aspect. Experience shows us, that character-
based compression is more successful with smaller files, while word-based com-
pression works better with larger files. Syllable-based methods have shown good
results when used on middle-size to small documents.

This can be quite important with the already mentioned networking. File
sizes of most common network content - html pages - are rather smaller. This
creates ideal circumstances for syllable based compression methods.

Another important aspect of syllable based compression are the dictionar-
ies of frequent syllables. These are used to initialize the compress algorithms
data structures and greatly influence their effectiveness, especially in the early
phase of the compression. Later the effect of the already processed part of input
dominates over the effect of the initial settings. Therefore the role of dictionar-
ies is vital with smaller files and slightly looses it’s importance on bigger files.
But, as mentioned above, it is the area of small to middle-size files, where the
syllable-based methods are targeted.

Building an optimal dictionary is not an easy task. Including too many rare
syllables into the dictionary results in longer bit-codes of the more common ones
and hence longer coded message. On the other hand not including a frequent
syllable means, that it would have to be coded by symbols (which is expensive)
and initialised with low frequency and accordingly longer bit-code. The number
of unique syllables in one language is measured in tens of thousands and every
single one of them can be either included or excluded. That brings us in front
of a problem of finding optimal solution among 2N candidates, where N is the
number of unique syllables. Genetic algorithm is a search technique, which can
be employed for exploring such big, highly non-linear spaces.

2 Syllable based approach to text compression

In his study from 2005 [9], Jan Lánský has introduced a new approach to com-
pression by symbols, the syllable-based compression. This new concept led to
designing two new algorithms, which had good results in practical use and un-
der certain circumstances even outperformed such sophisticated programs as
bzip2. This chapter is dedicated to presenting this technique.

2.1 Languages and syllables

Knowing and understanding the structure of coded message can be very helpful
in designing new compression method. In our case the coded message is a text

Genetic Algorithms in Syllable-Based Text Compression 23

in natural language. It’s structure is determined by the characteristic of the
particular language. One linguistic aspect is the morphology. Languages with
richer morphology (Czech, German, Turkish) tend to creating new words and
word-forms by concatenating the root of the word with one or several prefixes or
suffixes. On the other hand in languages like English the same effect is achieved
by accumulating words. In the first category of languages we may find (thanks to
their agglutinative nature) many rather long words composed of higher number
of syllables. Such words are not very common in English. We can expect, that
syllable-based compression will give better results on the first group of languages.

What is actually a syllable? Usually it is presented as a phonetic phenomenon.
American Heritage Dictionary [11] gives us the following definition: ’A unit of
spoken language consisting of a single uninterrupted sound formed by a vowel,
diphthong, or syllabic consonant alone, or by any of these sounds preceded,
followed, or surrounded by one or more consonants.’ Correct Hyphenation (de-
composition of a word into syllables) is a highly non-trivial issue. It can depend
on he etymology of the certain word and there can be several different ways, how
to do it. Fortunately we do not have to decompose the word always correctly
according to the linguistic rules. We have to decompose it into substrings, which
appear relatively often in the language. At this purpose we can get by with
the following definition: ’Syllable is a sequence of sounds containing exactly one
maximal subsequence of vowels’1.

We recognize five basic categories of syllables: capital (consist of upper-case
letters), small (lower-case letters), mixed (first letter is upper-case, other lower-
case), numeric (numeral characters) and other (characters other than letters
and numbers). Capital, small and mixed syllables altogether are called literal
syllables, while numeral and other are called non-literal.

2.2 Hyphenation algorithms

To perform syllable-based compression, we need a procedure for decomposition
into syllables. We will call an algorithm hyphenation algorithm if, whenever given
a word of a language, it returns it’s decomposition into syllables. According
to our definition of syllable every two different hyphenation of the same word
always contain the same number of syllables. There can be an algorithm, that
works as a hyphenation algorithm for every language. Then it is called universal
hyphenation algorithm. Otherwise we call it specific hyphenation algorithm.

We will describe four universal hyphenation algorithms: universal left PUL,
universal right PUR, universal middle-left PUML and universal middle-rightPUMR.

The first phase of all these algorithms is the same. Firstly, we decompose
the given text into words and for each word mark it’s consonants and vowels.
Then we determine all the maximal subsequences of vowel. These blocks form
the ground of the syllables. All the consonants before the first block belong to
the first syllable and those behind the last block will belong to the last syllable.

1 for formal definitions concerning languages and syllables see [9]

24 Tomáš Kuthan, Jan Lánský

Our algorithms differ in the way they redistribute the inner groups of con-
sonants between the two adjusting vowel blocks. PUL puts all the consonants
to the preceding block and PUR puts them all to the subsequent block. PUML

and PUMR try to redistribute the consonant block equally. If their number is
odd PUML pushes the bigger partity to the left, while PUMR to the right. The
only exception is, when PUML deals with an one-element group of consonants. It
puts the only consonant to the right to avoid creation of not so common syllables
beginning with a vowel.

Example 1. Hyphenating priesthood
correct hyphenation priest-hood
universal left PUL priesth-ood
universal right PUR prie-sthood
universal middle-left PUML priest-hood
universal middle-right PUMR pries-thood

We have measured the effectiveness of these algorithms. In general, PUL

was the worst one; it had lowest number of correct hyphenations and produced
largest sets of unique syllables. The main reason for this was, that it generates a
lot of vowel-started syllables, which are not very common. PUR was better but
the most successful were both ’middle’ versions. English documents were best
hyphenated by PUMR, while with Czech texts PUML was slightly better.

In the following few paragraphs we will describe two syllable-based compres-
sion methods

2.3 LZWL

LZWL is a syllable version of well-known LZW algorithm [14]. The algorithm
uses a dictionary of phrases, which is implemented by a data structure called
trie. Each phrase is assigned an ordinal number according to time, when it was
inserted into the dictionary.

During initialization this structure is filled with small syllables from the dic-
tionary of frequent syllables. In each step we identify the maximal syllable chain,
that forms a phrase from dictionary and at the same time matches a prefix of
the not yet processed part of input. The number of the phrase (or better to
say it’s binary representation) is printed on the output. It could happen, that
this maximal chain equals empty syllable. This would mean, that there is a new
syllable on the input and we would have to encode it character by character.

Before performing the next step we add a new phrase into the dictionary.
This new phrase is constructed by concatenating the phrase from last step with
the first syllable of the current phrase.

For more information on LZWL algorithm please consult [9].

2.4 HuffSyllable

HuffSyllable is a statistical syllable-based text compression method. This tech-
nique was inspired by the principles of HuffWord algorithm [15].

Genetic Algorithms in Syllable-Based Text Compression 25

It uses adaptive Huffman tree [7] as it’s primary data structure. For every
syllable type there is one tree built. In the initialization phase the tree for small
syllables is filled with frequent syllables from the database together with their
frequencies. In each step of the algorithm we try to estimate the type of next
syllable. If the type is different than anticipated, binary code of an escape se-
quence assigned to the correct syllable type is printed on the output. Next, the
code of the syllable is printed and it’s frequency value in the tree is increased by
one.

When the number of incrementations reaches certain value, the actualization
of frequencies takes place. All the values are halved, which enforces rebuilding
the whole tree.

For more information on HuffSyllable see [9].

2.5 Dictionaries

As we see, both algorithms use dictionaries of frequent syllables during the ini-
tialization. As we already mentioned in the first section, these dictionaries have
crucial effect on the effectiveness of the algorithm, especially when compressing
small files. These dictionaries are obtained by analysing a specimen of texts in
the given language. There are two ways of doing it described in [8] - cumulative
and appearance approach.

The cumulative criterion says, that a syllable is characteristic for the lan-
guage, if it’s quotient of occurrence to the number of all syllables in the texts is
higher than certain rate. Acronym C65 stands for dictionary containing all the
syllables having the quotient higher than 1/65000. On the other hand, build-
ing an appearance dictionary means including all the syllables, for which the
number of documents, where they occurred at least once, is higher than certain
percentage. Experimental results proved, that the use of appearance dictionaries
gave slightly better results.

Both methods have their advantages and their draw-backs. In fourth section
we will describe technique based on evolutionary algorithms, which take both
aspects into account.

3 Genetic algorithms in text compression

In 1997, Üçolük and and Toroslu have published an article about use of genetic
algorithm in text compression. Ideas presented in our paper are strongly influ-
enced by the results of their research, so let us give a brief summary of their
method.

Üçolük and Toroslu have studied compression based on Huffman encoding
upon mixed alphabet of characters and syllables2. This alphabet is apparently
a subset of union of all letters and syllables. The issue is, which syllables should
2 note, that this is a slightly different approach, than the one we are using. In their

concept, rare syllables are dissolved into characters every time, they occur in the
coded message, raising the occurrence of it’s characters. In contrast, when we come

26 Tomáš Kuthan, Jan Lánský

be included to ensure the optimal length of the compressed text. Observations
suggested, that including nearly all the syllables usually led to best results.
To prove this theory, the whole power set of the set of all syllables had to be
examined. A genetic algorithm has been designed for this task.

Nice overview of genetic algorithms can be found in [5]. The general principles
are well known: Candidate solutions are encoded into individuals called chromo-
somes. Chromosomes consist of genes, each encoding particular attribute of the
candidate solution. The values each gen can have are called alleles. The encoding
can be done in several different ways: binary encoding, permutational encoding,
encoding by tree, and several others. A population of individuals is initiated and
then bred to provide an optimal solution. The breeding is performed by two
genetic operators – cross-over, in which the two selected chromosomes exchange
genes, and mutation, where the value of a random gene is switched. The quality
of a candidate solution is represented by so-called fitness. Fitness has influence
on the probability, that the chromosome will be selected for mating. The higher
the value of the fitness function, the better the solution and the better chance,
that genes of the individual will carry over into next generations. After certain
amount of generations the algorithm should converge to the optimum.

In this particular case the candidate solution is represented by a binary string,
where the value 1 of i-th position means including the i-th syllable in the al-
phabet and 0 excluding it. The fitness represents the length of the text, if it
was coded by Huffman encoding above the candidate alphabet. But performing
compression and measuring the compressed text length would be rather expen-
sive; it would require the Huffman tree construction which is known to be of
order O(N log N) with considerably large multiplicative constant. Therefore it
was decided rather to estimate this value theoretically. This can be done in linear
time.

The approximation is grounded on two facts. The first fact can be deduced
from Shannon’s contribution [6]:

Lemma 1. If the entropy of a given text is H, then the greatest lower bound of
the compression coefficient µ for all possible codes is H/ log m where m is the
number of different symbols of the text.

Second, the Huffman encoding is optimal. This means the ratio of Huffman
compression can be well estimated as

µ = − 1
log m

m∑
i=1

pi log pi (1)

where pi is the probability of the i-th symbol of alphabet to occur in the text.
Having the compression ratio makes it easy to compute the final code length
simply by multiplying it by the bit-length of the uncompressed text, which is

across a new syllable, we encode it character by character and add it into the set of
syllables. Next time we read this syllable on input, we treat it just like any other
syllable.

Genetic Algorithms in Syllable-Based Text Compression 27

n log m. After a little mathematical brushing up we get this formula as the
desired approximation:

l = n log n−
m∑

i=1

ni log ni (2)

4 Characteristic syllables and their determination by GA

We have already mentioned, how important the dictionaries of characteristic
syllables were for the compression ratio. We have also made clear, that the
construction of these dictionaries is a difficult issue. In this section we will finally
introduce a genetic algorithm designed for this task.

The input of this algorithm is a collection of documents in given language,
so-called training set. The algorithm returns a file containing the characteristic
syllables as it’s output. The encoding of candidate solutions into chromosomes
is again very straightforward; provided that the training set contains a set of
N unique syllables, every individual is represented by a binary string of length
N , where the value 1 on i-th position means including i-th syllable in the set of
characteristic syllables, while 0 means excluding it. The role of the fitness func-
tion is played by estimated compressed length of a specimen from the training
set. We are breeding the population to find a solution minimizing this value.

Algorithm 1 shows, how the evaluation of characteristic syllables works.

Algorithm 1 Genetic algorithm for characteristic syllables
syllable space initialization
generate random initial population
while not last generation do

select several texts for specimen
new generation ← empty set
while size of new generation ≤ POOLSIZE do

A← random individual from old generation
B ← another random individual from old generation
C ← cross-over(A,B)
add C into new generation

end while
if best individuals of old generation are better than worst new individuals then

replace up to KEEPRATE worst new individuals with best old individuals
/*application of elitism*/

end if
switch generations
mutate random individual

end while

Our fitness function tries to approximate resulting bit length of the text
compressed by HuffSyll algorithm. The behaviour of this algorithm enables us

28 Tomáš Kuthan, Jan Lánský

to compute this value theoretically and therefore in reasonable time. The result-
ing dictionary of characteristic syllables should be optimal for use with HuffSyll.
It will be interesting to examine, whether this dictionary introduces some im-
provements of the LZWL effectiveness too.

4.1 Evaluating fitness

The most important part of a genetic algorithm is the fitness function. It has to
be accurate enough to provide good ordering on the set of candidate solutions and
it has to be efficient, because it is called very often. The requirements concerning
speed do not allow us using sophisticated calculations with high complexity.

We have decided not to use the whole training set in the fitness evaluation,
but rather it’s subset. For each generation we randomly select a specimen and use
it for computing the fitness of all individuals. This attitude has two advantages:
first, the evaluation needs less time, and second, the appearance of the syllable in
the language is taken in concern. It does not only matter, how many occurrence
the syllable has in the training set, but also in how many texts it appears at least
once, and therefore how big the chance is, that it will appear in the specimen.
After experimenting with the specimen size, we agreed on specimen consisting
of five documents.

The most accurate way of evaluating fitness would be performing the actual
compression and measuring the resulting file size. Again, this would be unac-
ceptably time-consuming. We had to do an approximation similar to the one
mentioned in last section.

The contribution of the characteristic syllables to the estimated bit length
may be evaluated by a formula very similar to formula 2. The only difference is,
that we will not only work with syllable frequencies in the file, which compressed
bit length we are trying to estimate, but also with their frequencies in the whole
training set. We will refer to these global numbers as n′i for number of occurrences
of i-th syllable and n′ for the number of all syllables in the training set. Our new
formula will be as follows

l = n log n′ −
m∑

i=1

ni log n′i (3)

The situation will be slightly different with the syllables marked as rare (non-
characteristic). These syllables would have to be encoded character by character
in the compression. They would be initialized with lower frequency, too. We take
this into account in our approximation by adding an estimate of bits necessary
for encoding the syllable and by increasing it’s code bit length by one.

The principals of the fitness evolution are outlined in pseudo code in algo-
rithm 2.

4.2 Setting parameters

The behaviour and effectiveness of a genetic algorithm depends on the settings of
several parameters. These parameters include size of the population, probability

Genetic Algorithms in Syllable-Based Text Compression 29

Algorithm 2 Evaluation of fitness
R← 0
for all file in specimen do

N ′ ← 0, S ← 0, P ← 0
for all syllable in set of syllables do

V ← number of occurrences of syllable in file
V ′ ← number of occurrences of syllable in all the files
N ′ ← N ′ + V ′

if syllable is marked as characteristic then
S ← S + V ∗ lg2(V

′)
else if V > 0 then

S ← S + V ∗ (lg2(V
′)− 1)

P ← P+ estimated bit length of syllable’s code
end if

end for
N ← number of syllables in file
R← R + N ∗ lg2(N

′)− S + P
end for
return R

of cross-over, probability of mutation, number of generations, range of elitism
and degree of siding with better individuals in selection. There is no general rule
for setting these parameters. The situation is even more complicated by the fact,
that these parameters often act in a rather antagonistic manner.

Most authors writing about evolutionary computing agree, that among these
parameters the one most important is the size of the population. Population
too small does not allow the algorithm to sufficiently seek through the whole
search space. Inadequately large population leads to consuming too much com-
putational power without much significant improvement in the quality of the
solution. Optimal size depends on the nature of the problem and on it’s size3.
Yong Gao insists, that the dependency with size is linear [4]. We have experi-
enced good results with populations of several hundreds individuals.

One thing that is tight very closely to population size is the type of cross-
over. In [10] the advantages of different types of cross-overs (one-point, two-
point, multi-point and uniform) are discussed. We have decided for multi-point
cross-over, because of it’s positive effect, when used with smaller populations.
It prevents the algorithm from creating unproductive clones. We have set the
number of cross-over points to the value of 10.

Elitism is an instrument against loosing the best solution found so far. It
means, that instead of replacing whole old population with the new one, we
keep several members of the old population as long as they are better than the
worst members of the new population. Too much elitism may cause premature
convergence, which is a really unpleasant consequence. To avoid this, we restrict
elitism to small number of individuals, about one percent of the population.

3 size of problem is defined as length of candidate solution encoding

30 Tomáš Kuthan, Jan Lánský

In selection, better individuals are treated with favor; better chromosome
has higher chance to be chosen, than the one below standard. The probability
p, that an individual is chosen, may be formalized by

p(xi) =
k − f(xi)

nk −
∑n−1

j=0 f(xj)
(4)

were n stands for population size, f for fitness and constant k is set equal to
maxx∈P (f(x)) + minx∈P (f(x)). P stands for the population.

5 Experimental Results

In this section we will present results of HuffSyll and LZWL algorithms when
used with genetically determined dictionaries of common syllables. The algo-
rithms will be compared according to resulting bpc4 value. The test will be
performed on two collections of files, one for English and one for Czech.

5.1 Training sets

We have constructed two training sets, which served us as input for the genetic
algorithm. They were also used for obtaining cumulative dictionary C65, to
which we compared the results of genetically determined dictionaries.

English set consised of 1000 documents randomly chosen from two corpora;
100 files from [2] and 900 law documents from [1].

Czech sets contained 69 middle-size (mean 215,3kB) fiction texts from [3].
The rest was formed by 931 newspaper articles obtained from Prague Depen-
dency Treebank [12]. With mean of 1,8kB they were consider as short documents.

5.2 Test sets

Both set for testing had the size of 7000 documents. Czech set contained 69
texts from [3] and 6931 articles from [12]. English test set consisted of 300 short
stories from [2] and 7000 documents randomly chosen from [1].

5.3 Results

In table 1 we can see the measured results for HuffSyll and LZWL algorithms
with different hyphenation and with or without use of genetically determined
characteristic syllables for Czech language. In table 2 there are the same data
for English.

As we can see, with HuffSyll there is significant gain when using characteristic
syllables instead of cumulative dictionary C65. This positive effect is greater for
smaller files. It is not surprising, because as we have already mentioned, when
compressing longer files the effect of already processed part of input overweights
4 bits per character

Genetic Algorithms in Syllable-Based Text Compression 31

Table 1. Effect of characteristic syllables in compression of Czech texts

Method 100B-1kB 1-10kB 10-50kB 50-200kB 200kB-2MB

HuffSyll + PUL + C65 5.32 4.70 4.18 3.95 3.89
HuffSyll + PUL + GA 4.77 4.40 4.09 3.92 3.87
HuffSyll + PUML + C65 5.32 4.67 4.10 3.85 3.80
HuffSyll + PUML + GA 4.70 4.31 3.99 3.81 3.78
HuffSyll + PUMR + C65 5.25 4.62 4.08 3.85 3.81
HuffSyll + PUMR + GA 4.72 4.33 3.99 3.82 3.79
HuffSyll + PUR + C65 5.29 4.64 4.09 3.84 3.80
HuffSyll + PUR + GA 4.76 4.35 4.00 3.82 3.78

LZWL + PUL + C65 6.16 5.19 4.29 3.80 3.54
LZWL + PUL + GA 6.08 5.19 4.31 3.81 3.54
LZWL + PUML + C65 6.30 5.19 4.24 3.75 3.52
LZWL + PUML + GA 6.15 5.23 4.29 3.76 3.51
LZWL + PUMR + C65 6.26 5.16 4.23 3.75 3.51
LZWL + PUMR + GA 5.98 5.16 4.27 3.76 3.51
LZWL + PUR + C65 6.30 5.19 4.24 3.75 3.52
LZWL + PUR + GA 6.20 5.26 4.31 3.77 3.52

Table 2. Effect of characteristic syllables in compression of English texts

Method 100B-1kB 1-10kB 10-50kB 50-200kB 200kB-2MB

HuffSyll + PUL + C65 4.51 3.62 3.26 3.16 3.16
HuffSyll + PUL + GA 3.90 3.36 3.18 3.14 3.15
HuffSyll + PUML + C65 4.84 3.84 3.39 3.24 3.21
HuffSyll + PUML + GA 4.04 3.46 3.26 3.20 3.20
HuffSyll + PUMR + C65 4.79 3.82 3.39 3.25 3.18
HuffSyll + PUMR + GA 3.98 3.45 3.25 3.21 3.17
HuffSyll + PUR + C65 4.90 3.88 3.41 3.27 3.25
HuffSyll + PUR + GA 4.00 3.46 3.25 3.22 3.23

LZWL + PUL + C65 5.61 3.63 2.81 2.70 2.86
LZWL + PUL + GA 5.43 3.69 2.86 2.73 2.87
LZWL + PUML + C65 5.89 3.77 2.88 2.73 2.87
LZWL + PUML + GA 5.30 3.63 2.87 2.74 2.87
LZWL + PUMR + C65 5.87 3.79 2.89 2.74 2.89
LZWL + PUMR + GA 5.25 3.57 2.84 2.74 2.88
LZWL + PUR + C65 5.92 3.80 2.91 2.77 2.91
LZWL + PUR + GA 5.25 3.59 2.87 2.76 2.91

32 Tomáš Kuthan, Jan Lánský

the initial settings from dictionary. An important matter is, that although the
gain gets smaller with lengthy texts, it never turns into draw-back. And the
average improvement of 0.6bpc in the category of shortest Czech files and 0.8bpc
in the same category of English files is noteworthy.

On the other hand, use of GA dictionaries did not bring such great effort
by LZWL algorithm. There is some upturn in the categories of smaller files, but
it is not as remarkable as we witnessed by HuffSyll. More important is, that
in some file size categories GA dictionary gave actually slightly worse results,
than ordinary C65 dictionary. To conclude, we may remark, that dictionaries
genetically determined for use with HuffSyll did not astonished us when used
with LZWL. There is no point in preferring them to cumulative dictionaries,
which are much easier to obtain. To the contrary, if we already posses the GA
dictionary for HuffSyll, we may use it for LZWL as well, without worrying that
the results will be too bad.

We have also compared the effectiveness of the syllable-based methods to
several commonly used compress programs, namely bzip2 1.0.3, gzip 1.3.5 and
compress 4.2. For comparison we have chosen the most successful hyphenation
algorithm and the most successful dictionary of characteristic syllables for the
given language. Table 4 contains the results for Czech and table 3 for English.
Figure 1 shows the comparison for czech documents graphically.

These numbers are slightly distorted by omission of the formats overheads.
gzip uses 18B of additional data for header plus 32-bit CRC checksum, and bzip2
uses 12B of additional information. Regrettably we could not find the format
specification for compress, but we assume, that the overhead is similar. There is
no such additional information in files compressed by LZWL and HuffSyllable.
Especially in the category of the smallest files this gives them an advantage over
the others, but the effect is not so high.

Table 3. Comparison with commonly used compress programs - English texts

Method 100B-1kB 1-10kB 10-50kB 50-200kB 200kB-2MB

HuffSyll + PUL + GA 3.90 3.36 3.18 3.14 3.15
LZWL + PUL + GA 5.43 3.69 2.86 2.73 2.87
gzip 1.3.5 4.94 3.05 2.38 2.58 3.10
bzip2 1.0.3 5.28 3.03 2.18 2.13 2.38
compress 4.2 5.86 4.19 3.44 3.25 3.31

As we see, the results of syllable-based text compression methods were not
bad. In the category of smallest files, HuffSyll has fully taken the advantage
of dictionary initialization and outmatched even such sophisticated program as
bzip2. As long as larger texts are concerned, bzip2 complied to it’s reputation,
and prevailed in a convincing manner. Relatively worst results were reached by
compress; it was outperformed by both syllable-based algorithms as well as by
both competition programs used in production. gzip was outmatched by HuffSyll

Genetic Algorithms in Syllable-Based Text Compression 33

Table 4. Comparison with commonly used compress programs - Czech texts

Method 100B-1kB 1-10kB 10-50kB 50-200kB 200kB-2MB

HuffSyll + PUML + GA 4.70 4.31 3.99 3.81 3.78
LZWL + PUML + GA 6.15 5.23 4.29 3.76 3.51
gzip 1.3.5 5.68 4.56 3.87 3.61 3.53
bzip2 1.0.3 6.05 4.62 3.54 3.06 2.83
compress 4.2 6.33 5.38 4.51 4.04 3.82

in the category of short documents, but was better with longer files. With LZWL
it was exactly vice-versa; for larger files LZWL gave better results than gzip.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 100B-1kB 1-10kB 10-50kB 50-200kB 200kB-2MB

C
om

pr
es

se
d

fil
e

si
ze

 (
bp

c)

Size category

HuffSyll
LZWL

gzip 1.3.5
bzip2 1.0.3

compress 4.2

Fig. 1. Comparison with commonly used compress programs - Czech texts

6 Conclusion

We have introduced a new method for obtaining dictionaries of characteristic
syllables for syllable-based text compression. On English and Czech texts, we

34 Tomáš Kuthan, Jan Lánský

have documented it’s advantages in comparison with cumulative dictionaries for
HuffSyll. We have studied the gain it produces with respect to size of compressed
files and hyphenation algorithm used. We have examined, how the use of HuffSyll
optimized dictionary affects effectiveness of LZWL algorithm.

In future works, it could be interesting to design a genetic algorithm for
obtaining dictionaries optimized for LZWL.

References

1. California law http://www.leginfo.ca.gov/calaw.html
2. Canterbury corpus http://corpus.canterbury.ac.nz
3. e-knihy http://go.to/eknihy as visited on 2nd February 2005
4. Gao, Y. Population Size and Sampling Complexity in Genetic Algorithms, Pro-

ceedings of the Bird of a Feather Workshops (GECCO) – Learning, Adaptation
and Approximation in Evolutionary Computation, 2003

5. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Pub. Co. 1989, ISBN 0201157675.

6. Hamming, R. W. Coding and Information Theory. Prentice-Hall, Englewood Cliffs,
NJ, 1986.

7. Huffman, D. A. A method for the construction of minimum redundancy codes. Proc.
Inst. Radio Eng. 40:1098-1101, 1952

8. Lánský J., Žemlička M. Compression of Small Text Files Using Syllables. Technical
report no. 2006/1. KSI MFF UK, Praha, January 2006.

9. Lánský J., Žemlička M. Text Compression Syllables. Richta K., Snášel V., Pokorný
J.: Proceedings of the Dateso 2005 Annual International Workshop on DAtabases,
TExts, Specifications and Objects. CEUR-WS, Vol. 129, pg. 32-45, ISBN 80-01-
03204-3.

10. Spears W. M., De Jong K. A. An Analysis of Multi-Point Crossover. FGA, (1991)
301–315

11. The American Heritage R© Dictionary of the English Language, Fourth Edition.
Houghton Mifflin Company, 2004. http://dictionary.reference.com/browse/syllable
(accessed: January 09, 2007).

12. The Prague Dependency Treebank http://ufal.mff.cuni.cz/pdt/
13. Üçolük G., Toroslu H.: A Genetic Algorithm Approach for Verification of the

Syllable Based Text Compression Technique. Journal of Information Science, Vol.
23, No. 5, (1997) 365–372

14. Welsh T. A. A technique for high performance data compression. IEEE Computer,
17,6,8-19,1984

15. Witten I., Moffat A., Bell,T.: Managing Gigabytes: Compressing and Indexing Doc-
uments and Images. Van Nostrand Reinhold, 1994

Using XSEM for Modeling XML Interfaces of
Services in SOA?

Martin Nečaský

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

martin.necasky@mff.cuni.cz, http://www.necasky.net

Using XSEM for Modeling XML Interfaces of
Services in SOA?

Martin Necasky

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University

martin.necasky@mff.cuni.cz, http://www.necasky.net

Abstract. In this paper we briefly describe a new conceptual model for
XML data called XSEM and how to use it for modeling XML inter-
faces of services in service oriented architecture (SOA). The model is a
combination of several approaches in the area of conceptual modeling of
XML data. It divides the process of conceptual modeling of XML data to
two levels. The first level consists of designing an overall non-hierarchical
conceptual schema of the domain. The second level consists of deriving
different hierarchical representations of parts of the overall conceptual
schema using transformation operators. Each hierarchical representation
models an XML schema describing the structure of the data exchanged
between a service interface and external services.

Keywords: conceptual modeling, XML, XML Schema, SOA

1 Introduction and Motivation

Recently, XML has been used for an exchange of data between heterogeneous
information systems, for an internal data representation, and also as a logical
database model. Therefore, modeling of XML data should become an inseparable
part of the application data modeling process on the conceptual level.

For example, assume a medical application integrating data about patients
from several external sources. The application works as a service. It is a black
box that stores the patient data in an internal database in an internal represen-
tation and provides access to the database through predefined interfaces used
by external services such as hospital systems or insurance systems. The data ex-
changed between an external service and the medical service is in an XML form.
Each interface provides an XML schema describing the form in which the data is
presented to and received from the external services through the interface. The
external services do not know the structure of the internal database. They only
know the XML schemes provided by the interfaces.

? This paper was supported by the National programme of research (Information so-
ciety project 1ET100300419)

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 35–46, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

36 Martin Nečaský
2

Assume an interface Iexam for exchanging results of medical examinations
and an interface Idiag for exchanging medical diagnoses in XML. Both inter-
faces define XML schemes describing the required structure of exchanged XML
documents. We can imagine the following scenario:

1. physician in a hospital makes a diagnosis of a patient; to decide the diagnosis,
the physician needs the results of a patient’s examination performed in a
different hospital

2. physician requests the hospital system for the results; hospital system re-
quests the medical service for the results through Iexam

3. medical service exports the results from the internal representation into an
XML document with the structure defined by Iexam and sends it back to the
hospital system

4. hospital system receives the XML document and presents the data to the
physician; physician diagnoses a patient’s disease and records the diagnosis
to the hospital system

5. hospital system exports the diagnosis data into an XML document with the
structure defined by Idiag and sends it to the medical service through Idiag

6. medical service receives the XML document with the diagnosis and stores
the data into the internal database

Fig. 1 shows how the medical service similar to our example would be or-
ganized today. The figure shows the internal structure of the service. There is
the internal database and a conceptual schema describing the structure of the
database. For the external hospital system, the service is a black box. The hos-
pital system communicates with the service through the interfaces Iexam and
Idiag. The figure illustrates the scenario described above.

Fig. 1. Motivation

The connection of the example with the conceptual modeling is that there
is a need to model the structure and semantics of XML documents exchanged
between the medical service and external services/applications through the in-
terfaces on the conceptual level. However, the following problems can occur:

Using XSEM for Modeling XML Interfaces of Services in SOA 37
3

1. conceptual schema and the XML schemes describing the structure of the
data exchanged through the interfaces can be missing

2. if the conceptual schema and the XML schemes are present, there is no
explicit binding between them (i.e. the XML schemes have to be created
and maintained manually)

3. scripts for extracting data from the XML documents and transforming the
data into the internal representation and vice versa must be created and
maintained manually

The challenge is to eliminate these problems (1-3) by introducing a con-
ceptual model for XML data. Such a model must allow to design an overall
conceptual schema of the service domain and to derive the XML schemes de-
scribing the service interfaces (1). Even though the XML schemes organize the
data into hierarchies, the overall conceptual schema need not be hierarchical.
The explicit binding between the XML schemes and the overall non-hierarchical
conceptual schema facilitates the maintenance of the XML schemes and the cre-
ation and maintenance of the scripts that transform data between the internal
representation and the interface XML representations (2,3).

2 Related Work

If we want to model XML data on the conceptual level, we have to deal with
some special features of XML data such as irregular structure, ordering, mixed
content, and a hierarchical structure.

There are some approaches, for example ERX [6] or XER [8], extending the
E-R model to be suitable for the conceptual modeling of XML data. Because
E-R is not hierarchical (there are M : N relationship types and n-ary rela-
tionship types), XML schemes must be derived in some way. The problem is
that a user can not specify how the data should be organized in hierarchical
XML. The hierarchical structure is derived automatically without following user
requirements.

Another possibility of how to model XML data is to start from a hierar-
chical structure. This approach may be called hierarchical approach. There are
conceptual models based on the hierarchical approach, for example ORA-SS
[1]. Using this approach we can model hierarchical structures easily. However, a
problem with modeling of non-hierarchical structures arises. Moreover, hierarchi-
cal schemes are not so transparent as non-hierarchical E-R schemes. A designer
must think about the data in hierarchies which is not natural in general.

The problem of the approaches is that it is not possible to design one or
more hierarchical organizations of parts of an overall non-hierarchical conceptual
schema of the domain as it is required by the example medical service. Moreover,
it is not possible to derive different hierarchical organizations of the same parts
of the overall conceptual schema.

We propose a new conceptual model for XML called XSEM trying to solve
the mentioned problems. In [4], we offer a survey of conceptual modeling for

38 Martin Nečaský
4

XML. We propose a detailed list of requirements for conceptual models for XML,
describe recent conceptual models for XML in a unified formalism, and compare
the described models against the requirements. In [5], we describe our XSEM in
a formal way.

In this paper we describe XSEM briefly and we show its possible application
to modeling of XML interfaces of SOA services. There are two contributions of
this paper. First, we show how XSEM can be applied to conceptual modeling of
XML interfaces of SOA services and how it can facilitate important processes
in the service creation and maintenance. Second, because we show a practical
application of XSEM, we also concentrate on presentation features of XSEM.
We show that it is necessary to extend the XSEM constructs proposed in [5] to
present XSEM schemes in a transparent way.

3 Idea

We illustrate our idea with the architecture of the medical service. There is the
internal logical database schema describing the structure of the data stored in
the internal database. The medical service provides several interfaces used by
external applications to access the internal database. Each interface provides an
XML schema describing the structure of XML documents that are exchanged
between the service and the external applications through the interface. We can
comprehend the XML schemes as hierarchical views on parts of the internal
logical schema. Each group of external applications needs different structure of
XML documents. These documents can contain the same data, but in different
hierarchical organizations.

Following the architecture of the medical service, we need to design an overall
non-hierarchical conceptual schema of the domain. From the overall schema, we
need to derive several hierarchical conceptual views. These views describe the
XML schemes for the interfaces. The derivation must be driven by a designer.
The hierarchical view design process consist of selecting the components of the
overall schema that should be represented in the view followed by the specifica-
tion of how the components should be organized in the hierarchy. At the end,
the XML schemes are derived automatically from the conceptual hierarchical
views.

4 XSEM Model

XSEM is a conceptual model for XML based on the previous idea. It divides
the conceptual modeling process to two levels. On the first level, we design an
overall non-hierarchical conceptual schema of our domain using a part of XSEM
called XSEM-ER. On the second level, we design hierarchical conceptual schemes
using a part of XSEM called XSEM-H. XSEM-H schemes are not designed sepa-
rately from the XSEM-ER schema. We derive them from the XSEM-ER schema
by so called transformation operators. Each XSEM-H schema is a hierarchical
view on a part of the XSEM-ER schema. It describes required XML schema on

Using XSEM for Modeling XML Interfaces of Services in SOA 39
5

the conceptual level and there is an explicit binding between the hierarchical
organization and the semantics of its components.

We can easily apply XSEM to model XML interfaces of SOA services. First,
we design an overall XSEM-ER schema of the service domain and then we derive
an XSEM-H schema for each service interface. The XSEM-H schema describes
the XML schema for the XML data exchanged through the interface.

4.1 XSEM-ER

XSEM-ER is an extension of E-R proposed by Chen. It allows to model the
special XML features like irregular structure, ordering, and mixed content. On
this level, it is not important how the modeled data is organized in hierarchies.
These hierarchical organizations are derived during the second part of the mod-
eling process.

Fig. 2 shows an example XSEM-ER schema modeling a small part of the
medical domain. As in the classical E-R model, there are strong and weak entity
types and relationship types. Strong entity types represent stand alone objects
and are displayed as boxes. Fore example, there is a strong entity type Hospital
modeling hospitals or a strong entity type Physician modeling physicians. Weak
entity types represent objects that depend on another objects. We display them
as boxes with an inner hexagon. Each entity type the weak entity type depends
on is connected with the box by a solid arrow. We call these entity types as
components of the weak entity type. For example, there is a weak entity type
Department with a component Hospital modeling departments of hospitals.
Relationship types represent relationships between objects. Therefore, a rela-
tionship type is composed of one or more entity types called components of the
relationship type. We display relationship types by hexagons connected by solid
arrows with their components. For example, there is a binary relationship type
Employ that represents employments of physicians at departments of hospitals
or at separate clinics (an extending modeling construct described in the following
text is used to unify departments and clinics).

XSEM-ER adds new modeling constructs called data node types, and outgoing
and incoming cluster types for modeling special XML features. A data node type
is connected with an entity type which is called component of the data node type.
It represents data values assigned to an instance of the component. These values
are not attribute values of the entity. They are data values which are mixed with
the relationships and weak entities having the entity as a component value. In a
graphical representation, a data node type is displayed as an ellipse with a name
of the data node type.

For example, assume a patient visiting a physician (represented by the weak
entity type V isit at Fig. 2). During the visit, the physician writes a description
of the course of the visit. The description is not an attribute value of the visit,
it is an unstructured text assigned to the visit. Moreover, the text is mixed with
the examinations made during the visit. At Fig. 2, we use a data node type V Txt
and an incoming cluster type (see the following text) to model this situation.
Ex. 1 is a motivating example for the introduction of data node types. There is

40 Martin Nečaský
6

Fig. 2. XSEM-ER Schema

an element visit containing data about the date of the visit, the visiting patient,
the visited physician, and the place of the visit. Moreover, there is a description
of the visit mixed with the examinations performed during the visit.

<visit><date>2006-09-12</date>

<patient><name>John Black</name></patient>

<physician><name>Bill White</name></physician>

<department><name>Department A</name>

<hospital><name>Hospital B</name></hospital>

</department>

<description>Because of the results of a

<examination><dsc>manual abdominal examination</dsc>...</examination>

there is a suspicion of some liver problems. Consequently, I made a

<examination><dsc>blood analysis</dsc>...</examination>...

</description>

</visit>

Ex. 1: Mixed Content in XML

An outgoing cluster type represents a union of entity types and it can be
used as a component of a relationship type or weak entity type. In a graphical
representation, an outgoing cluster type is displayed as a circle with an inner
label +. It is connected by a solid line with a relationship type or weak entity
type it participates in. Each component of the cluster type is connected by an
arrow going from the circle to the component.

We use outgoing cluster types for modeling irregular structure of XML. For
example, patients can visit physicians at departments of hospitals and at separate

Using XSEM for Modeling XML Interfaces of Services in SOA 41
7

clinics. This is an example of irregular structure we can express in XML. We use
an outgoing cluster type Department+Clinic to model this situation. We show
the cluster type at Fig. 2. Ex. 2 is a motivating example for the introduction of
outgoing cluster types. There is an element patient representing a patient with
a name ”John Black”. It contains a list of visit elements representing patient’s
visits. There are two visits in the XML document. First, he visited a physician
”Bill White” at a department ”Department A” of a hospital ”Hospital B”. Then
he visited a physician ”Jack Brown” at a clinic ”Clinic C”. It is a simple example
of irregular structure. There is a department element in the first visit element
and a clinic element in the second visit element.

<patient><name>John Black</name>

<visit><date>2006-09-12</date>

<physician><name>Bill White</name></physician>

<department><name>Department A</name>

<hospital><name>Hospital B</name></hospital>

</department></visit>

<visit><date>2006-10-03</date>

<physician><name>Jack Brown</name></physician>

<clinic><name>Clinic C</name></clinic></visit>

</patient>

Ex. 2: Irregular structure in XML

Incoming cluster types are used for grouping different relationship types,
weak entity types, and data node types having the same component. We call this
component as parent of the incoming cluster type. The incoming cluster type
specifies that instances of the components of the incoming cluster type connected
with the same parent instance are mixed together. Moreover, ordering can be
specified on such groups. Hence, we can use incoming cluster types for modeling
mixed content in XML documents. In a graphical representation, an incoming
cluster type is displayed as a circle with an inner label +. It is connected by a
solid line with its parent and there is a solid arrow from each of the components
to the cluster.

For example, we use an incoming cluster type (V isit, Examination+V Text)
at Fig. 2 to model a description of a visit mixed with the examinations made
during the visit. Ex. 1 described above is a motivating example. It is important
to specify that the incoming cluster type is ordered because an ordering between
the parts of the visit description and the examinations performed during the
visit is important as shown at Ex. 1.

4.2 Hierarchical Projections

The notion of hierarchical projections represents the step between the non-
hierarchical XSEM-ER level and the hierarchical XSEM-H level. It is a formal-

42 Martin Nečaský
8

ization of binarization of relationship types and weak entity types. For example,
the weak entity type V isit can be represented in a hierarchy where we have a
list of patients, for each patient we have the list of patient’s visits, and for each
patient’s visit we have the visited physician and the department or clinic where
the patient visited the physician. This hierarchy describes the structure of the
XML document at Ex. 2.

Hierarchical projections formalize such descriptions of hierarchical organiza-
tions of non-hierarchical relationship types and weak entity types. For example,
the previous hierarchy is described by the following three hierarchical projec-
tions:

V isit[Patient → V isit] (HP1)
V isitPatient[V isit → Physician] (HP2)
V isitPatient[V isit → Department + Clinic] (HP3)

HP1 represents a list of patient’s visits. HP2 represents the visited physi-
cian and HP3 represent the department or clinic where the patient visited the
physician. Another hierarchy is described by the following three hierarchical
projections:

V isit[Department + Clinic → Physician] (HP4)

V isitDepartment+Clinic[Physician → Patient] (HP5)

V isitDepartment+Clinic Physician[Patient → V isit] (HP6)

It represents a hierarchy with a list of departments and clinics. For each
department or clinic there is a list of physicians being visited by patients at the
department or clinic (HP4). For each physician, in the context of a department
or clinic, there is a list of patients who visited the physician at the department
or clinic (HP5). Finally, for each patient in the context of a department or clinic
and physician there is a list of patient’s visits of the physician at the department
or clinic (HP6).

More formally, a hierarchical projection of R is an expression
Rcontext[parent → child]. It specifies a hierarchy where parent is superior to
child. Context is a sequence of components of R and specifies the context in
which the projection is considered. For example, HP5 specifies a hierarchy where
Physician is superior to Patient in the context of Department or Clinic.

4.3 XSEM-H

XSEM-H is used for a specification of a hierarchical organization of a part of
a given XSEM-ER schema using hierarchical projections. It does not add any
semantics. An XSEM-H schema is an oriented graph where nodes represent entity
types, relationship types, and data node types from the XSEM-ER schema and
edges represent hierarchical projections of these types.

An XSEM-H schema is derived from an XSEM-ER schema by transforma-
tion operators. As parameters for the transformation we supply entity types,
relationship types, and data node types we want to represent in the hierarchical
XSEM-H schema and specify how the components should be organized in the

Using XSEM for Modeling XML Interfaces of Services in SOA 43
9

hierarchy. The operators are not described in a more detail here. For a more
detail, see [5].

Fig. 3 shows an XSEM-H schema where the edges labeled with 1, 2, and 3
represent the hierarchical projections HP1, HP2, and HP3.

Fig. 3. XSEM-H Schema

Fig. 4 shows an XSEM-H schema where the edges labeled with 4, 5, 6, and 7
respectively, represent the hierarchical projections HP4, HP4, HP5, and HP6
respectively. At the top of the hierarchy, there is represented the outgoing cluster
type Department + Clinic. However, we need the resulting hierarchical schema
to have a tree structure. Hence, each node in the tree can have no or only one
parent. For this reason we propose so called structural representatives in this
paper as an extension to XSEM described in [5]. We represent the hierarchical
projection HP4 by the two edges labeled with 4 and 5. Each has a child node
representing Physician. These two child nodes have the same content which is
specified by the parent of the edge labeled with 6. The child nodes of 4 and 5
are structural representatives of the parent of 6. The reason for this is that we
specify the structure of the Physician representation only once and we denote
the places where the Physician representation can be placed in the schema by
one or more structural representatives.

It is important to keep a tree structure of hierarchical schemes. Otherwise, we
would have problems with the schema presentation in a transparent way. Assume
that the nodes representing Department and Clinic have more child nodes.
Connecting the edges 4, 5 with the same child node representing Physician
means problems with displaying the child nodes in the right order. However, this
order is important when we model XML data. Moreover, such a presentation of
the schema would not be so transparent in general.

44 Martin Nečaský
10

Fig. 4. XSEM-H Schema

5 Service Creation and Maintenance Support with
XSEM

The goal of this paper is to show how XSEM can be applied to modeling of service
XML interfaces and how it can facilitate the service creation and maintenance.
We showed how we can use XSEM to model the structure and semantics of the
XML data exchanged through the interfaces. We have an XSEM schema consist-
ing of an overall non-hierarchical XSEM-ER schema describing the semantics of
the data and several hierarchical XSEM-H schemes describing how the data is
organized in hierarchial XML documents exchanged through the interfaces.

On the logical level we need to store the modeled data in an internal database
and we need scripts for the transformation between the internal database struc-
ture and the XML structure required by the interfaces.

First, we need to derive the internal logical database schema from the XSEM
schema. The process is similar to the process of derivation of relational database
schemes from E-R schemes. However, this process is more complex in the case
of XSEM because an XSEM schema consist of the XSEM-ER schema and one
or more XSEM-H schemes. Therefore, if we want to derive an optimal database
schema we have to take into account not only the non-hierarchical XSEM-ER
schema but also the hierarchical XSEM-H views and optimize the logical struc-
ture of the data according to the required hierarchial organizations. There are
several possibilities of how to store our data on the logical level.

(1) Native XML database systems seem as an optimal solution because we
are dealing with XML data. However, if there are more XSEM-H schemes orga-
nizing the same components from the XSEM-ER schema in different hierarchies
we have to choose one of them as the primary organization describing the logical
schema of the native XML database and provide the scripts for the transforma-
tion between the primary organization and the other hierarchical organizations.
Therefore, the performance of the system strongly depends on the ability of the
native XML database system to effectively execute such transformations. How-
ever, the performance of recent native XML database systems is weaker than
the performance of relational database systems.

Using XSEM for Modeling XML Interfaces of Services in SOA 45
11

(2) Relational database systems are very effective for strictly structured data.
However, they are not too effective for semistructured data like XML. It is
necessary to decompose the XML data to many tables and to join them back in
different ways. It is possible to translate an XSEM-ER schema into a relational
schema in a very similar way as in the case of classical E-R and to construct
SQL views that build required XML documents. The advantage is that the logical
database schema does not depend on required hierarchical XSEM-H views but
the overall XSEM-ER schema only. Therefore, it is not a problem to add, delete,
or change a particular hierarchical view. However, it can be ineffective to built
frequent hierarchies repeatedly from the tables.

(3) Nor the native XML approach nor the relational approach seems to be
optimal for our purposes. However, recent database systems like DB2 9 [7] offer a
possibility to combine both approaches effectively. In such systems there is still
a basic concept of table but extended with the XML data type supplied with
an extension of SQL to build XML data from relational ones and an XQuery
support. Therefore, we can combine structured and semistructured data easily
in one table and combine the advantages of both approaches. Moreover, there
can be many cases where data is structured but breaking the first normal form
is an advantage (for attributes of entity and relationship types for example).
Therefore, we can use the object-relational model instead of the relational one.

The problem to solve is what parts of the XSEM-ER schema should be
represented in the object-relational model and what parts should be represented
in the XML model. The basic solution is to divide the entity and relational types
to two groups. The ones that are represented in more different hierarchies where
it would not be effective to select one of them as the primary and transform it
to the others should be represented in the object-relational model (i.e. table).
The ones that are represented in only one or often repeated hierarchy where it
would not be effective to construct the hierarchy frequently or the ones with a
very irregular or mixed content should be represented in the XML model.

For example, the entity types Hospital, Patient, or Physician appear in
many hierarchies with different structure. Therefore, it is better to represent
them as separate tables. On the other hand, a patient history or examination
have an unchanging hierarchical structure (they are documents) and their parts
(not modeled in our simple XSEM-ER schema) do not appear in other hierar-
chies. Therefore, we can store the whole history or examination as one XML
document in our database and we do not need to store their parts in separate
tables.

After we have derived the logical schema from the conceptual schema we
need the scripts for the transformation between the logical database structure
and the XML structure of the interfaces. We have the explicit binding between
the logical schema and the XSEM-ER schema, between the XSEM-ER schema
and the XSEM-H schemes, and we can easily and automatically derive the XML
schemes from the XSEM-H schemes. Therefore, we can automate the creation of
the transformation scripts between the logical database structure and the XML
interface structures.

46 Martin Nečaský
12

Our approach facilitates not only the service creation but also its mainte-
nance. Any change in the structure of the interfaces is firstly modeled in the
XSEM schema. Therefore, we can propagate the change directly to the XML
schemes describing the interfaces, to the logical database level, and also to the
transformation scripts between them.

6 Conclusions and Future Work

In this paper, we described a new conceptual model for XML called XSEM which
is based on modeling of XML schemes as views on an overall non-hierarchical
schema. We described how XSEM can be used for modeling of XML interfaces
of services in SOA and how it can facilitate the creation and maintenance of the
services.

In our future research we will propose detailed algorithms for the translation
of XSEM-H schemes to the logical XML level. Beside the grammar based XML
schema languages such as XML Schema we will study the usage of pattern
based XML schema languages such as Schematron [3] for the description of
more complex integrity constraints. After this, we will create a prototype CASE
tool for designing XSEM schemes. Moreover, we will propose algorithms for
the automatic derivation of the logical database schemes from XSEM schemes
and algorithms for the automatic derivation of the scripts for the transformation
between the logical database structure and XML structure modeled by XSEM-H
schemes as requested by this paper.

References

1. Dobbie, G., Xiaoying, W., Ling, T.W., Lee, M.L.: ORA-SS: An Object-Relationship-
Attribute Model for Semi-Structured Data. TR21/00, Department of Computer
Science, National University of Singapore. December 2000.

2. D. C. Fallside, P. Walmsley. XML Schema Part 0: Primer Second Edition. World
Wide Web Consortium, Recommendation REC-xmlschema-0-20041028. October
2004.

3. International Organization for Standardization, Information Technology Document
Schema Definition Languages (DSDL) Part 3: Rule-based Validation Schematron.
ISO/IEC 19757-3, February 2005.

4. Necasky, M.: Conceptual Modeling for XML: A Survey. Tech. Report No. 2006-3,
Dep. of Software Engineering, Faculty of Mathematics and Physics, Charles Uni-
versity, Prague, 2006, 54 p. http://www.necasky.net/papers/tr2006.pdf

5. Necasky, M.: XSEM - A Conceptual Model for XML. In Proc. Fourth Asia-Pacific
Conference on Conceptual Modelling (APCCM2007), Ballarat, Australia. CRPIT,
67. Roddick, J. F. and Annika, H., Eds., ACS. 37-48., January 2007.

6. Psaila, G.: ERX: A Conceptual Model for XML Documents, in Proceedings of the
2000 ACM Symposium on Applied Computing, p. 898-903. Como, Italy, March 2000.

7. Saracco, C.M., Chamberlin, D., Ahuja, R.: DB2 9: pureXML Overview and Fast
Start, IBM Redbooks, 134 p., June 2006.

8. Sengupta, A., Mohan, S., Doshi, R.: XER - Extensible Entity Relationship Model-
ing, in Proceedings of the XML 2003 Conference, p. 140-154. Philadelphia, USA,
December 2003.

A Modular XQuery Implementation

Jan Vraný, Jan Žák

Department of Computer Science and Engineering,
FEE, Czech Technical University in Prague,

Karlovo namesti 13, 120 00, Praha, Czech Republic
{vranyj1,zakj2}@fel.cvut.cz

A modular XQuery implementation

Jan Vraný, Jan Žák

Department of Computer Science and Engineering, FEE, Czech Technical University
in Prague,

Karlovo namesti 13, 120 00, Praha, Czech Republic
{vranyj1,zakj2}@fel.cvut.cz

Abstract. CellStore/XQuery is modular a implementation of the XML
Query Language interpreter. Primary goal of the implementation is to
provide open experimental platform for implementing and testing new
query optimization techniques for querying XML data. This paper de-
scribes architecture and design features of the implementation as well as
possible approaches to extending the interpreter.

1 Introduction

XML is one of the most progressive technology. It has become popular as a format
for data exchange between applications. However, nowadays XML is used not
only for data exchange, but also for storing data. Several database management
systems are specialized for storing XML documents. As more and more data
were stored in the XML format, a need for querying XML data arised and thus
there was a need for XML query language too.

XML query language [1] – or XQuery – is a language for querying designed
by W3 Consortium. It combines features offered by two well-known and popular
query languages - XPath [2] and SQL.

One of the most important and widely known constructs of SQL is select-
from-where-order by clause. XQuery provides similar feature – so-called FLWOR
expression. FLWOR is an acronym for for-let-where-order by-return.

Within an XQuery expression it is possible to use arithmetic, conditional, log-
ical and comparison expressions, XPath expressions with predicates and function
calls. It’s also possible to define new functions.

XQuery is both query and transformation language, because it provides a
facility for creating new XML documents using a special language construct
called constructor.

This paper describes a XQuery implementation called CellStore/XQuery.
The implementation was developed within the CellStore project. Primary goal
of the implementation is to provide a modular implementation which is easy to
understand and easy to extend. It’s designed to serve as testing platform for
various optimization techniques – new indexing methods, new storage models
and so on.

The following text will briefly describe architecture of our XQuery imple-
mentation and possible ways how to extend the interpreter with some kind of
new optimized algorithm in the future.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 47–54, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

48 Jan Vraný, Jan Žák

2 XQuery interpreter architecture

Because our implementation is primarily intended as an experimental frame-
work for testing a new approaches in XML data querying, it consists of several,
well-defined and well-separated components. At figure 1 there is an architecture
overview. In our implementation, each component is represented by one class
and all other components communicate just through calling methods of this
class. In many cases, implementation of component’s functionality cannot be
done within one class. In such cases, there is only one class which act as a facade
for the rest. These facades together with true polymorphism makes changing of
the implementations very easy.

When a query is to be executed, it’s sent to a parser, which converts the
query from it’s textual representation to internal form. Then it the query in the
internal form returned to the interpreter. The interpreter will then process the
query. During query processing, various data sources might (or might not) be
accessed (using the fn:doc or fn:collection functions). In such case, a docu-
ment provider component is asked for particular document. For data accessing
and navigating through a document, a data access component is used. There are
one data access component instance per document. After processing the query,
result is left in interpreter’s data context.

Now we will describe each component in little bit more detail.

Fig. 1. XQuery architecture

A Modular XQuery Implementation 49

2.1 Parsing XML query

The XQuery parser is implemented using SmaCC tool [5], which is able to gener-
ate LR(1) or LALR(1) parser from a grammar in the EBNF form. The grammar
was taken from W3C specification. Because XQuery syntax is pretty compli-
cated, some of its syntactic constructions cannot be easily handled by SmaCC-
generated parser. This leads to some limitations of the parser which will be
described in little bit more detail in the section 3.2.

2.2 Internal query representation

A parsed query is internally represented as a parse tree. For example the parse
tree for the query at figure 2 is depicted at figure 3.

let $ a := 1
return $ a + 1

Fig. 2. Example of an XQuery expression

PrologNode FLWORNode

LetNode AdditiveNode

QNameNode

IntegerNode

IntegerNode

VariableNode

QNameNode

MainModuleNode

Fig. 3. Parse tree for the query at fig. 2

50 Jan Vraný, Jan Žák

XQuery specifications defines so-called XQuery Core, which is a subset of
XQuery. Every XQuery expression could be converted to XQuery Core expres-
sion, which has same semantics as the original query. Our implementation doesn’t
perform such conversion. A query is represented in the same form as it was writ-
ten by user.

2.3 Accessing data sources

XQuery allows user to access more than one XML document per query using
fn:doc and fn:collection built-in functions. These two functions loads docu-
ment with given uri at current context1, so the user can access and query data
in th document. These functions could be used as many times as user wish.

Whenever a document is to be loaded into the current context, a document
provider is asked to return the document in form in which it could be used by
interpreter for further processing.

2.4 Accessing and navigating through XML data

Once a XML document is loaded in interpreter’s context, data in the document
are (not necessarily) accessed. Because we want to make our implementation as
general as possible, we should have the possibility of different data source type
and data models in mind. For example, documents could be stored as DOM
nodes, as DOM-like nodes, as XML infoset or in data structures as they are
used by various XPath accelerators.

It’s important for any practical XQuery interpreter to access data stored in
various data models, because user could access data in a XML database together
with data stored on disk in one query.

To solve this problem, we developed a concept of document adaptor. It pro-
vides methods for data accessing (xpathLocalNameOf:, xpathValueOf: for exam-
ple) and for navigating through the document structure in XPath axis manner
(xpathChildOf:, xpathParentOf: for example). Those methods get so-called node-
id, which identifies a node within a document, and return a set of node-ids or
value represented as a string.

Full list of methods provided by the adaptor is in table 1. It’s obvious
that presented set of methods is not the minimal one. For example, method
xpathAncestorOf: could be implemented using xpathParentOf:. It is also obvi-
ous, that such implementations might not be the most efficient ones for given
storage model. Our implementation defines several so-called primitive methods
that must be supported by the adaptor and every other method could be assem-
bled as applications of primitive ones. However, user can override any of such
methods and use the most efficient algorithm for given storage model.

Node-id could be any kind of object, it has no meaning for the rest of the
system. It’s used just for identifying XML nodes. For example in our implemen-
tation node-ids for DOM document tree adaptor are DOM nodes itself, whereas
1 In fact, these function load just the root node. The rest of the document is loaded

lazily.

A Modular XQuery Implementation 51

Table 1. Document adaptor methods

method name parameters return value

xpathDocument node-id

xpathIsAttribute: node-id Boolean

xpathIsDocument: node-id Boolean

xpathIsElement: node-id Boolean

xpathIsText: node-id Boolean

xpathLocalNameOf: node-id String

xpathNameOf: node-id String

xpathNameSpaceOf: node-id String

xpathValueOf: node-id String

xpathAncestorOf: node-id ordered set of node-ids
xpathAncestorOrSelfOf: node-id ordered set of node-ids
xpathAttributeOf: node-id ordered set of node-ids
xpathChildOf: node-id ordered set of node-ids
xpathDescendantOf: node-id ordered set of node-ids
xpathDescendantOrSelfOf: node-id ordered set of node-ids
xpathFollowingOf: node-id ordered set of node-ids
xpathFollowingSiblingOf: node-id ordered set of node-ids
xpathPrecedingOf: node-id ordered set of node-ids
xpathPrecedingSiblingOf: node-id ordered set of node-ids
xpathParentOf: node-id node-id

for CellStore XML database adaptor node-ids are pointers to CellStore’s cell-
space [6]

2.5 Interpreting the query

The XQuery interpreter is implemented as interpreter design pattern [3]. It tra-
verses the parse tree and evaluates nodes. In order to a evaluate node, all its
subnodes have to be evaluated. A node is evaluated within a context (which
stores a data set, variable bindings and some auxiliary informations like focus)
and as result of evaluation new context with new data is created and stored
in the interpreter. There is one method per one parse tree node type in the
Interpreter class. This has significant impact on implementation flexibility –
see section 4.

An outline of method which interprets additive node at figure 3 is at figure 4.
In fact, the real method is little bit more complicated, because XQuery defines
process called atomization, which should be applied to every operand before
addition is performed. Context handling is also a little bit tricky and should be
cleaned-up.

3 Limitations

Our implementation has also some limitations, which will be described in this
section.

52 Jan Vraný, Jan Žák

visitAdditiveNode(additiveNode) {
var myContext, leftNodeContext, rightNodeContext;
/* we have to save current context because it’s overriden by sub-node */
myContext = this.context;
/* evaluate left node */
this.evaluate(additiveNode.getLeftNode());
/* save its context */
leftNodeContext = this.context;
/* restore original context before right node’s evaluation */
this.context = myContext;
/* evaluate right node */
this.evaluate(additiveNode.getRightNode());
/* save its context */
rightNodeContext = this.context;
/* store result context */
this.context = new Context(leftNodeContext.getData()

+ rightNodeContext.getData())
}

Fig. 4. Method for evaluating additive node

3.1 Type system

XQuery language contains set of language constructs for typing and validating
expressions against W3C XML Schema [4]. Our implementation does not support
types. Unsupported constructs are not included in the grammar and thus using
such constructs will result in a parse error.

Although no typing is supported in the query itself, our implementation
internally uses six data types:

– node
– xs:boolean
– xs:number
– xs:string
– xs:NCName
– xs:QName

This is because XQuery contains constructs for arithmetic, conditional (if-
then-else), logical and comparison expressions, XPath expressions with predi-
cates and function calls.

3.2 Parser limitations

XML query language syntax contains some problematic parts, which cannot be
handled by SmaCC-generated parsers.

First sort of problems is related to fact, that keywords (if, div, return,
etc.) are not reserved words. That means, that whether some token is treated

A Modular XQuery Implementation 53

element element {}

Fig. 5. XQuery expression with keyword as element name

as keyword token or NCName token depends on parsing context. Consider the
query at figure 5.

Although it’s perfectly legal according to the XQuery specification, our parser
(generated by SmaCC) will raise a parse error because after “element” keyword
(first “element”) an QName is expected.

Another sort of problems is related to direct constructors. Direct construc-
tors allows user to construct new nodes during the query processing using stan-
dard XML syntax. In fact, this means that every well-formed XML document
is also valid XQuery expression and thus XQuery parser should parse any XML
document. XML grammar itself is too complex to be handled by SmaCC. Our
implementation currently supports direct constructors in a very limited way.

4 Extending the intepreter

In this section we will outline how to extend the XQueryinterpreter and add and
test new optimization techniques. Basically, there are two levels at which our
implementation could be extended and/or improved.

First one is the level of data access layer. To add a new type of data source,
a new document adaptor has to be implemented. A complete set of tests is
provided, so it’s easy to find out whether new adaptor fulfils interpreters re-
quirements. Because document adaptor implements axis-based navigation, any
method that improves axis accesses can be used.

However, there are also several approaches that speeds-up not only per-axis
access, but whole XPath expressions. Such techniques can be easily implemented
and tested as well. Because whole query is represented as a parse tree, embedded
XPath expression is represented as one parse tree node (whichh contains nodes
for every part of expression) and because there is one method for each parse tree
node type, one can simply override method responsible for evaluating XPath
expression node and use any kind of optimization method. One can use either
structural indices,value-based indices or both, if applicable. It’s also possible to
speed-up just some parts of XQuery expressions (for example, just parts without
predicates). In fact, one can optimize any XQuery construct by this way.

5 Conclusion and future work

A prototype of the XQuery interpreter has been implemented. This implemen-
tation is currently very limited, but it supports all basic constructs: FLWOR
expressions, full XPath expressions with predicates, conditionals, arithmetic,
logical, comparison and quantified expressions, XML nodes construction and

54 Jan Vraný, Jan Žák

function calls (both built-in and user-defined ones). It can be seen as a platform
for further experiments with XML query optimization techniques using both
indices (value-based and structural ones) and special techniques like structural
joins.

Further development will be focused on the following topics:

– improvement of the XQuery parser
– implementing full set of built-in functions
– simplifying the context machinery in the interpreter
– improving document adaptor for CellStore/XML database by using some

XML-specific optimization techniques
– creating interface to the XQuery Test Suite [7]

References

1. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. W3C, 1st edition, 2006.
http://www.w3.org/TR/xquery/.

2. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, 1999.
http://www.w3.org/TR/xpath.

3. K. B. Sherman R. Alpert and B. Woolf. The Design Patterns Smalltalk Companion.
Addison Wesley, 1st edition, 1998.

4. C. M. Sperberg-McQueen and H. Thompson. XML Schema 1.1. W3C, 2006.
http://www.w3.org/XML/Schema.

5. The Refactory Inc. SmaCC compiler-compiler. The Refactory Inc., 1st edition,
2000. http://www.refactory.com/Software/SmaCC.

6. J. Vraný. Cellstore - the vision of pure object database. In Processings of DATESO
2006, pages 32–39, 2006.

7. W3C XML Query Working Group. XML Query Test Suite. W3C, 1st edition, 2006.
http://www.w3.org/XML/Query/test-suite/.

A Content-Oriented Data Model for
Semistructured Data

Tomáš Novotný

Czech Technical University, Faculty of Electrical Engineering,
Technická 2, 166 27 Prague 6, Czech Republic

novott2@fel.cvut.cz

A Content-Oriented Data Model
for Semistructured Data

Tomáš Novotný

Czech Technical University, Faculty of Electrical Engineering
Technická 2, 166 27 Prague 6, Czech Republic

novott2@fel.cvut.cz

Abstract. There are several data models that are capable of handling semistruc-
tured data. The best known are OEM, XML DOM, RDF, and the ECMAScript
object model. All these models have different purpose. OEM was used by sys-
tems for integration of heterogeneous data sources. XML DOM is specified as a
programming interface to manipulate XML documents used as a unified me-
dium for data exchange. RDF provides primarily a data model for sharing
metadata. The ECMAScript object model is widely used to manipulate data in
web applications. However, none of these models is intended to be used directly
in an interactive way. This paper presents the CO (Content-Oriented) data
model, which is designed for users to browse, annotate, and relate pieces of in-
formation. It can provide change notifications hence it can be directly used in
interactive applications without building an extra object model.

Keywords: data entity, data aspect, informed list, informed property

1 Introduction

Traditional mainstream databases save data according a schema that describes the
context of the data. They usually need to specify the schema in advance. This re-
quirement is for certain data very difficult or even impossible to fulfill. It is a case of
irregular data or data that structure changes over time [1].

Another option is to store data together with a description of its meaning. Such da-
ta do not have to be structured according a schema and therefore they are referred to
as semistructured data [2]. Data models for semistructured data can be easily used by
knowledge management systems or systems for integration of heterogeneous informa-
tion sources [3].

The existing well-known data models for semistructured data are not intended to be
directly used in interactive applications. Programming interfaces around these models
are usually based on elaborate query languages that simplify locating and extracting
of particular information from these models. However, the more advanced queries can
be answered, the more complex systems have to be built to detect changes. Therefore,
there is usually no unified support for events that notifies user interface controls when

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 55–66, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

56 Tomáš Novotný

something has changed hence such data models cannot be directly used in interactive
applications.

This paper describes the CO data model that unlike other data models for semis-
tructured data is intended for interactive applications, especially applications that al-
low users to browse, annotate, and relate pieces of information. It can be also used for
visual manipulation with data stored in other data models or exchange formats for
semistructured data like XML or JSON. It is designed to be very simple in order to
keep implementation simple.

The CO data model has a modular architecture. A core provides very limited func-
tionality enabling basic manipulation with data. The core itself is not intended for in-
teractive applications as the change notifications are not supported. Nevertheless, it
may be used by scripts that are using the same data model. Other features are pro-
vided by external modules called extensions. This extensible architecture allows de-
velopers to choose particular configuration that will support just required features
without unwanted ones. It also enables having various implementations of the same
feature in order to enable direct data binding for various user interface toolkits.

Other data models for semistructured data and systems for that they were built are
described in the second chapter. A design the CO data model and an implementation
of a framework for the CO data model are presented in the third and fourth chapters.
Conclusions and a future work are given in the last chapter.

2 Related Work

With the development and growth of the Web [4] in the last decade of the last century
there arose a need to extract and integrate data that are available on the Web [5]. At
the same time, there was a research project called TSIMMIS whose aim was to create
a system for assisted integration of data either structured (e.g. database records),
semistructured (e.g. web pages), or unstructured (e.g. plain files) from heterogeneous
data sources [6].

2.1 TSIMMIS

TSIMMIS was a joint project between Stanford and the IBM Almaden Research Cen-
ter [3]. It had mediator architecture [7] [8] and it basically consisted of four types of
core components: translators, mediators, constraint managers, and classi-
fier/extractors. Translators were template-based wrappers [9] that converted data
from various sources into a common information model. Mediators were information
routers that forward queries to particular translators and merge the results [10]. Con-
straint managers [11] ensured that the integrated data are consistent. Classi-
fier/extractors automatically classified and extracted key properties of resources from
the unstructured data sources. They were based on the Rufus system developed by the
Almaden Research Center [12].

Information between these components was exchanged in a self-describing object
model called OEM (Object Exchange Model) [13]. OEM allowed the storing of
nested objects. Each object was represented by a structure with four fields: label, type,

A Content-Oriented Data Model for Semistructured Data 57

value, and oid. The label was a string tag that describes what the object represents.
The type was a data type of the object’s value. The value stored the actual data. The
oid was a unique identifier of the object.

TSIMMIS was not a fully automated system, but rather a tool to assist humans. It
provided a graphical user interface component called MOBIE (MOsaic Based Infor-
mation Explorer) [14] that allowed users to browse OEM objects and specify queries
in an SQL-like language called OEM-QL [13].

2.2 LORE

LORE (Lightweight Object REpository) was a database management system designed
to manage semistructured data [1]. It was built on top of the O2 object database [15].
Semistructured data were stored in a modified OEM that was presented in the
TSIMMIS project. That version of OEM could be represented as a labeled directed
graph where the vertices were objects. There were two types of objects: complex ob-
jects and atomic objects. Whereas the complex objects might have outgoing edges to
other objects, the atomic objects had no outgoing edges but they contained a value
from one of the atomic types (e.g. integer or string).

LORE provided a query language called LOREL [16]. LOREL was defined as an
extension to OQL (an SQL-like query language for the ODMG model) [17]. LOREL
was also later used as a query language for TSIMMIS [8].

LORE introduced a DataGuide [18]. The DataGuide was a structure summary of
the OEM model that was automatically maintained. DataGuides allowed users to
browse the OEM model and formulate queries. They were also used by the system to
store statistics and to optimize the queries. The DataGuide itself was an OEM object
so it could be stored in and managed by an OEM DBMS.

Another feature of LORE was an external data manager [19]. The external data
manager allowed users to integrate data from external data sources. The external data
were represented by an external object. The external object was stored in the OEM
database and it contained both a specification on how to fetch the external data and a
cached version of the external data. The wrappers for the external data were reused
from the TSIMMIS project.

After the emergence of XML, developers of LORE found that data models of XML
and OEM were similar. So they decided to modify LORE to serve as a data manage-
ment system for XML [20]. The modifications to LORE also required changes to the
data model [21].

2.3 XML

XML is a markup language designed for data exchange [22]. The data are represented
as documents. The XML document is a tree-like structure built from nested tagged
elements. Each element can contain data stored as attributes/value pairs or as a plain
text. XML also provides a mechanism to create links between elements.

There are several ways to extract information from XML documents. None of them
can be considered as universal but each is convenient for a particular purpose. One of

58 Tomáš Novotný

the best known is SAX. SAX (Simple API for XML) provides a read-only and for-
ward-only event-driven interface [23]. Another read-only interface is XmlReader (not
to be confused with XMLReader, the Java interface from the SAX2 library). In con-
trast to SAX, XmlReader allows developers to navigate through XML on-demand in
the way that is sometimes referred to as a pull model [24]. More sophisticated naviga-
tion provides XPathNavigator that enables cursor-like navigation in a XML document
powered by XPath expressions [25].

There is also a standardized virtual data model for XML called DOM (Document
Object Model) that is specified as a programming interface and it is developed to ma-
nipulate a memory representation of XML documents [26].

2.4 RDF

RDF (Resource Description Framework) is a set of specifications [27] that was cre-
ated to provide a unified way to share metadata and it can be also used to represent
data [28]. Although RDF is more complex than previous models, the data model of
RDF can be represented by a collection of triples [29]. Each triple consists of a sub-
ject, a predicate, and an object. Predicates are also called properties. Subjects may be
URIs or blanks. Predicates are URIs. Objects can be URIs, literals, or blanks. URIs
may be used both as references to existing resources and as a global identifiers. Liter-
als represent values. They may be plain or typed. Blanks are local identifiers.

There are various languages that extend capabilities of RDF. The best known are
RDF Schema and OWL. RDF Schema allows users to describe classes and properties
[30]. OWL (Web Ontology Language) enables data description using ontologies [31].

2.5 ECMAScript object model

The ECMAScript object model is widely used by web applications to manipulate
data [32]. Structure of the ECMAScript is similar to LORE’s version of OEM. The
difference between LORE’s OEM and the ECMAScript object model is that objects
in the ECMAScript object model have no identifiers and each object can have only a
single property with the same name. Multiple values can be represented by a special
build-in type of object – an array. The textual representation of this model is some-
times referred to as JSON [33]. JSON has similar purpose as XML. There is also a
standard ‘ECMAScript for XML’ that adds native XML support to ECMAScript [34].

2.6 iDM

iDM is an advanced data model that is designed to represent heterogeneous data [35].
iDM is now being developed as a part of a personal information management system
iMeMex [36].

A Content-Oriented Data Model for Semistructured Data 59

3 Design

As mentioned in the introductory chapter, this paper describes the CO data model that
is designed for interactive applications. This implies that except of developers, the de-
sign should also take account of users. There are three elemental requirements: The
first is that the data model should be simple because the simplest it would be, the ea-
siest the implementation of a framework for the data model would be. The next is that
the data model has to be extensible so the developers can use only that parts what they
really need. The last requirement is that it should have similar concepts as existing
systems for information handling that are widely used by users, so that users do not
need to spend time for an extra training.

The most famous and widely used system that is used by users to access informa-
tion is the Web. The information on the Web is usually stored in a document called a
web page. There are two basic ways to access a particular web page: users can either
enter the address of the web page or navigate to a particular web page from another
web page. Advanced methods include searching by entering a query into a search en-
gine or navigating through tags. Tags are usually keywords that are attached to a piece
of information. In fact, navigation through tags is mostly a particular form of simple
page to page navigation, as tags are usually located within the page.

The data model should offer thus similar ways of accessing information as the
Web: The data model should allow users to navigate through the data and access the
data directly from an address, enable developers to easily create tagging systems, and
provide programming interfaces so that specialized search engines can be built or
adapted to process search queries.

3.1 Data model

The architecture of the CO data model results from its requirements. The data model
consists of items called entities. The entity is a wrapper for data. The data contained
in the entity will be referred to as content. In addition to the content, each entity has a
type and optionally has references to other entities.

The content of an entity can be anything. Entities can store numbers, text docu-
ments, multimedia files, an array of objects or other entities, or any other pieces of in-
formation. Entities do not need to contain data directly, but they can contain special
objects that refer to external data stored in local files, databases, or even remote web
sites.

The entities’ types have a similar purpose as the labels in TSIMMIS’s version of
OEM or the tags in XML, with the difference that labels in OEM and tags in XML are
strings but entities’ types are represented by another or, in special cases, the same en-
tity. This architecture allows saving common metadata to the entity that represents the
type. Metadata can contain both information for humans, such as documentation, and
information for machines, for instance specifications of constraints or processing in-
structions for manipulation of external data that are referred in the content. The fact
that the type of entity A has is entity B can be expressed in RDF by a triple <en-
tity:A> <rdf:type> <entity:B>.

60 Tomáš Novotný

Entity reference is consists of a key and a value. It is a simplified version of the
properties in RDF. Both the key and value of a reference are entities. In contrast to
RDF, the value of a reference cannot be a literal. As with the ECMAScript object
model, entity can have at most one reference with the same key. As the reference key
is an entity, the entity can store metadata that can provide information such as seman-
tic meaning, usage constraints, or human-readable documentation. Fig. 1 shows the
data model of the entity.

Fig. 1. The data model of the entity.

Entities can be directly accessed by URIs. However, URIs are not mandatory for enti-
ties. An entity without a URI can be accessed by searching or by local navigation.

This part described the core part the CO data model. Additional features can be
provided as extensions. Following part describes representation of several basic data
structures.

3.2 Data structures

Unlike RDF or the ECMAScript object model, the CO data model has no direct sup-
port for collections. As collections are the most common data structures, this part
sketches how to form collections in the CO data model.

There are basically two ways to build a collection. The first way is to create a spe-
cial data type that represents a collection, so the collection will be stored in the con-
tent of an entity. This method allows the storing of any type of collection. It is espe-
cially useful for vectors or matrices and it can be likened to containers in RDF or
arrays in the ECMAScript object model.

The second method uses references to group items in a collection. There are two
types of collection that can be formed. The first type includes collections whose entity
directly refers to multiple items. Basic examples of such collections are simple or hi-
erarchical dictionaries.

The other type of collection points directly to just one item. One of the simplest
examples is a singly linked list. The singly linked list is usually formed by adding to
each item a reference that points to the following item. There can be also a special ob-
ject that represents a whole collection. This object has a reference to the first item in
the collection. In this scenario, items of a collection do not know in what collection
they are contained without an additional reference and they can be usually contained
in a single collection.

A Content-Oriented Data Model for Semistructured Data 61

The CO data model enables the creation of specialized singly linked lists where
each item can be contained in multiple collections and each item knows what collec-
tions it is contained in without additional references. Such linked lists will be referred
to as informed lists. The architecture of an informed list is as follows.

The entity that represents a collection remains unchanged – it has a reference to the
first item. Items also contain references to the next item. However these references are
not identified by a general next entity but by the entity of the collection. As each col-
lection is represented by a different entity, items have references with different keys
and hence they can be contained in multiple collections. Items also know the collec-
tions where they are included because this information is stored in the keys of the ref-
erences to the next items. Fig. 2 shows an example of an informed list.

Fig. 2. Example of an informed list. The list is represented by entity “a list”. It contains

three items: “item 1”, “item 2”, and “item 3”. Entity “first” represents a known entity that is
used as key that refers to the first item and “none” is another known entity needed to store ref-
erence to the owning list in the last item. Entities are represented by boxes, references are ren-
dered as solid arrows, and keys of the references are pointed by dashed lines.

One possible application for informed lists is a tagging system where each tag is
represented by a collection of entities that are tagged by this tag. A tagging system
can list all tags for a resource in a constant time without any additional indexes. It can
also immediately retrieve an additional resource for each tag. This feature can be use-
ful to provide a simple and fast tag-based ‘see also’.

Several informed lists can form a multilevel hierarchical structure where descen-
dants know their ancestors. One of the possible applications is a system for hierarchi-
cal categorization.

The idea of informed lists can be also used to construct properties that can have
multiple values and that know what objects refer to them. Such properties will be
called informed properties. This construct can be conceived as a fusion of informed
lists. Each list contains values for a particular property. And the key of the reference
to the first value in each list is replaced by a key that will identify the property. An
example of informed property is in Fig. 3.

62 Tomáš Novotný

Fig. 3. Example of informed properties. Entity “an object” has two informed properties:

“property A” and “property B”. Property “property A” has two values “value A1” and “value
A2” and property “property B” with one value “value B1”.

4 Implementation

This chapter is divided into two parts. The first part outlines the general architecture
of a framework that implements the CO data model. The second part describes a pro-
totypical implementation to evaluate the CO data model.

4.1 Architecture

All frameworks for the CO data model should implement the core of the data model.
The core was described in the Architecture part of the Design chapter. A core frame-
work should provide programming interfaces to access entities and to get and set a
type, references, and content. There are no methods to create or delete entities be-
cause each URI refers to an existing entity. The consequence is that there is an infinite
number of entities. However, only a finite number of entities contain non-default in-
formation hence the framework should store only the entities with non-default infor-
mation. The entities with default information are called implicit entities and the other
entities are called explicit entities. The implicit entities have null content, no refer-
ences, and a default type.

The minimal framework may implement only a volatile data model. Such a frame-
work can be useful, for instance, in applications that use existing web services to store
data.

Other features are optional and they are not part of the core. They are provided by
extensions. There are several types of extensions. One type of the extension is a data
aspect. The data aspect is a component that simplifies manipulation with a complex
data structure, such as the informed list. The data aspect for the informed list can pro-
vide methods to add, remove, or search items. It can enhance the performance by
cached backward links or a cached index array for immediate random access.

Another type of extension is a data store provider. The data store provider allows
loading and saving data to data storages either local (e.g. files, databases) or remote

A Content-Oriented Data Model for Semistructured Data 63

(e.g. web services). They can also serve as data adapters between the CO data model
and internal object models of other applications.

Moreover, interactive applications require knowing when something has changed.
This implies enhanced implementation of the core that raises an event if a change oc-
curs. The system for event notification may be developed for a certain user interface
toolkit so the application developers can directly bind controls to the data model.

4.2 Prototype

Currently, there is a prototype of a framework for the CO data model. It is written in
C# [37] and runs on the .NET 3.0 Framework [38] [39]. The data model is imple-
mented as .NET Component Model [40]. It was specially developed for the Windows
Presentation Foundation [41]. It implements a data aspect for the informed list that
caches backward links and an index array to provide faster random access. The data
aspect also provides collection-change notifications so it can be bound to standard
controls that display collections.

The framework supports simple transactions that delays commit and provides roll-
back of changed data. There are four data store providers: file system provider, SQL
provider, Lucene.Net [42] provider, and Berkeley DB [43] provider.

4.3 Evaluation

The architecture of the data model allows simple implementation of the data model as
.NET Component Model with change notifications. Therefore, application developers
can directly bind data to user interface controls. Two-way data binding [44] let them
develop applications where users can interactively manipulate data while the develop-
ers do not have to build an extra object model and write a glue code to transfer data
between data stores and user interface controls.

5 Conclusion

The extensible architecture of the CO data model has some advantages and draw-
backs. The main advantage is that complex features can be later replaced with a better
implementation. However, it can result in several implementations of the same feature
and developers have to choose one that best fits their needs, so they may spend extra
time analyzing various implementations. This can be avoided, of course, by maintain-
ing a list of various implementations with comparisons and use cases.

As is mentioned in the introduction, in contrast to OEM, XML, and RDF, the CO
data model is intended to be directly manipulated by users through user interface con-
trols. Therefore, before a development of other extensions is undertaken, this model
must prove that it is really useful and that future work on this model will not be a
waste of time. Such proof may be done by building small applications that will help
users to organize information from various aspects, such as a system to store personal
thoughts or to manage personal data from other applications.

64 Tomáš Novotný

If the data model will be successful, it can be later enhanced by other extensions
demanded by users. Some possible extensions might be a change log to enable full
undo functionality or allowing users to share their information on a peer-to-peer net-
work and letting them specify particular access rights for particular users on a particu-
lar set of their information.

Acknowledgments. I would like to express many thanks to Christoph Quix, who has
taught me to write a paper and with whom I was consulting the content of this paper,
and Roger Hughes, who made a deep language correction of the draft.

References

1. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom. Lore: A database management
system for semistructured data. SIGMOD Record, 26(3), pages 54-66, 1997.

2. P. Buneman. Semistructured data. In Proc. of the 16th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 117-121, 1997.

3. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J.
Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. In
Proc. of IPSJ Conference, pages 7-18, 1994.

4. T. Berners-Lee, R. Cailliau, J. Groff. The World-Wide Web. Computer Networks and ISDN
Systemts, 25, pages 454-459, 1992.

5. O. Etzioni. The World-Wide Web: quagmire or gold mine? Communications of the ACM.
Volume 39, Issue 11, 1996.

6. J. Hammer, J. McHugh, H. Garcia-Molina, Semistructured Data: The TSIMMIS Experi-
ence, In Proc. ADBIS'97, St. Petersburg, Russia, 1997.

7. G. Wiederhold. Mediators in the Architecture of Future Information Systems. Computer 25,
1992.

8. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajamaran, Y. Sagiv, J. Ullman, V.
Vassalos and J. Widom, The TSIMMIS approach to Mediation: Data Models and Lan-
guages, Journal of Intelligent Information Systems, 8(2) pages 117-132, 1997.

9. J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, and V. Vassalos.
Template-based wrappers in the TSIMMIS system. In Proc. ACM SIGMOD International
Conference on Management of Data (SIGMOD '97), pages 532-535, 1997.

10. Y. Papakonstantinou, S. Abiteboul, and H. GarciaMolina. Object fusion in mediator sys-
tems. In Proc 22nd. VLDB conference, 1996.

11. S. Chawathe, H. Garcia-Molina, J. Widom. Constraint Management in Loosely Coupled
Distributed Databases. Technical report, Computer Science Department, Stanford Univer-
sity, 1993.

12. K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, and J. Thomas. The RUFUS System: In-
formation Organization for Semi-Structured Data. Proceedings of the International Confer-
ence on Very Large Databases, pages 97-107, Dublin, Ireland, 1993.

13. Y. Papakonstantinou, H. Garcia-Molina, J. Widom. Object Exchange Across Heterogene-
ous Information Sources. In Proc. of 11th International Conference on Data Engineering
(ICDE'95), pages 251-260, Taiwan, 1995.

14. J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom, In-
formation translation, mediation, and mosaic-based browsing in the TSIMMIS system. In
Proc. of the ACM SIGMOD Internation Conference on Management of Data, 1995.

A Content-Oriented Data Model for Semistructured Data 65

15. O. Deux. The O2 system. Commun. ACM 34, num. 10, pages 34-48 1991.
16. S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Weiner. The Lorel Query Language for

Semistructured Data. Journal of Digital Libraries, 1(1), pages 68-88, 1997.
17. R. Cattell, T. Atwood. The Object database standard, ODMG-93. Morgan Kaufmann Pub-

lishers Inc. 1994, ISBN 978-1558603028.
18. R. Goldman, J. Widom. DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases. In Proc. VLDB, pages 436-445, 1997.
19. J. McHugh, J. Widom. Integrating Dynamically-Fetched External Information into a

DBMS for Semistructured Data. SIGMOD Record, 26(4), pages 24-31, 1997.
20. J. Widom. Data management for XML: Research directions. IEEE Data Engineering Bulle-

tin, 22(3), pages 44-52, 1999.
21. R. Goldman, J. McHugh, J. Widom. From semistructured data to XML: Migrating the Lore

data model and query language. In Proc. of the WebDB workshop, 1999.
22. T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau. Extensible Markup Lan-

guage (XML) 1.0 (Fourth Edition), W3C Recommendation, 16th August 2006.
23. Simple API for XML.

http://www.saxproject.org/
24. A. Skonnard. XML in .NET: .NET Framework XML Classes and C# Offer Simple, Scal-

able Data Manipulation. In MSDN Magazine, January 2001.
25. D. Esposito. Manipulate XML Data Easily with the XPath and XSLT APIs in the .NET, In

MSDN Magazine, July 2003.
26. W3C. Document Object Model. W3C Recommendation.
27. F. Manola, E. Miller. RDF Primer. W3C Recommendation 10 February 2004.
28. S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann, I.

Horrocks. The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing, 4
(5), pages 63-74, 2000.

29. G. Klyne, J. Carroll. RDF Concepts and Abstract Syntax. W3C Recommendation, 10th Feb-
ruary 2004.

30. D. Brickley, R. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation, 10th February 2004.

31. D. McGuinness, F. van Harmelen. OWL Web Ontology Language. W3C Recommendation,
10th February 2004.

32. ECMA. ECMAScript Language Specification. Standard ECMA-262 3rd Edition, 1999.
33. D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON).

Request for Comments: 4627, July 2006.
34. ECMA. ECMAScript for XML (E4X) Specification. Standard ECMA-357 2nd Edition,

2005.
35. J. Dittrich, M. Salles. iDM: a unified and versatile data model for personal dataspace man-

agement. In Proc. VLDB 2006, 32, pages 367-378, 2006.
36. J. Dittrich, L. Blunschi, M. Färber, O. Girard, S. Karakashian, M. Salles. From Personal

Desktops to Personal Dataspaces: A Report on Building the iMeMex Personal Dataspace
Management System. In BTW 2007, 2007.

37. ECMA. C# Language Specification. Standard ECMA-334 4th Edition, 2006.
38. .NET Framework 3.0 Technologies, MSDN

http://msdn2.microsoft.com/en-us/netframework/aa663323.aspx
39. .NET Framework 3.0 Community

http://www.netfx3.com/
40. System.ComponentModel Namespace, .NET Framework Class Library, MSDN

http://msdn2.microsoft.com/en-us/system.componentmodel(vs.80).aspx

66 Tomáš Novotný

41. Windows Presentation Foundation, MSDN Library

http://msdn2.microsoft.com/en-us/library/ms754130.aspx
42. Lucene.Net

http://www.dotlucene.net/
43. Oracle Berkeley DB Product Family

http://www.oracle.com/database/berkeley-db/
44. Data Binding Overview, WPF, MSDN Library

http://msdn2.microsoft.com/en-us/library/ms752347.aspx

Index-Based Approach to Similarity Search in
Protein and Nucleotide Databases

David Hoksza and Tomáš Skopal

Department of software engineering, Faculty of Mathematics and Physics,
Charles University in Prague

Malostranské nám. 25, 118 00, Prague 1, Czech Republic
{david.hoksza, tomas.skopal}@mff.cuni.cz

Index-based approach to similarity search in
protein and nucleotide databases

David Hoksza and Tomáš Skopal

Department of software engineering, Faculty of Mathematics and Physics,
Charles University in Prague

Malostranské nám. 25, 118 00, Prague 1, Czech Republic
{david.hoksza, tomas.skopal}@mff.cuni.cz

Abstract. When searching databases of nucleotide or protein sequences,
finding a local alignment of two sequences is one of the main tasks.
Since the sizes of available databases grow constantly, the efficiency of
retrieval methods becomes the critical issue. The sequence retrieval re-
lies on finding sequences in the database which align best with the query
sequence. However, an optimal alignment can be found in quadratic time
(by use of dynamic programming) while this is infeasible when dealing
with large databases. The existing solutions use fast heuristic methods
(like BLAST, FASTA) which produce only an uncontrolled approxima-
tion of the best alignment and even do not provide any information about
the alignment approximation error. In this paper we propose an approach
of exact and approximate indexing using several metric access methods
(MAMs) in combination with the TriGen algorithm, in order to reduce
the number of alignments (distance computations) needed. The exper-
imental results have shown that a straightforward adoption of MAMs
to sequence retrieval cannot outperform the specialized heuristic algo-
rithms (at least at the moment). On the other side, the results show
MAMs could provide a basis for specialized access methods capable of
precision/efficiency trade-off control.

Keywords: bioinformatics, indexing, database, MAM, (P)M-tree, TriGen, BLAST

1 Introduction

When managing biological sequence information, it is important to realize that
organisms linked by common descent use similar genes to secure their biologi-
cal functions. Therefore, it makes sense to store known genetic sequences in a
database and search for similarities among them. Because these databases grow
quickly in time and due to expensive comparison of sequences, there is a strong
need for efficient methods capable of handling such amounts of data.

One way to handle the increasing number of sequences is indexing, which
is unavoidable in today’s situation of exponentially growing databases to be
searched (Figure 1). There have appeared indexing applications in this area
already, however, they usually tried to split sequences into q-grams (substrings

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 67–80, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

68 David Hoksza, Tomáš Skopal

of length q) [14] and compute simple Hamming distance [21] on them. This
is inappropriate in many cases because of neglecting the evolutionary nature
of similarity in protein and nucleotide sequences. As an other disadvantage,
some information is lost when cutting sequences into q-grams and computing
distances just among these q-grams. Some efforts have also been undertaken in
order to develop non-hamming distance which reflects better biological meaning
of similarity [23], while such a distance has been used to index q-grams [11].
Anyway, today’s most used methods for sequence retrieval are based on BLAST
- a heuristic approach supporting local alignment (described in Section 2.2).

1.1 Protein Databases

DNA molecules consist of a linear (unbranched) string of nucleotides (conven-
tionally labeled A, C, G, T) which can be transcribed to RNA and later trans-
lated to proteins. A protein molecule is a linear chain of amino acids. There
are 20 amino acids, each encoded by a triplet of nucleotides (called codon). The
assignment between codons and amino acids is determined by an evolutionarily
fixed code table – the genetic code. Every protein has some biological activity
which is derived from its three-dimensional structure. Similar amino acid se-
quences tend to have similar three-dimensional structure and therefore similar
function1. When a protein sequence is determined (nowadays it is usually derived
from an experimentally obtained sequence of the corresponding gene), its func-
tion is usually unknown. One should try to find similar proteins in the database
of already known protein sequences (even in proteins of different species) to find
out possible purpose of the newly sequenced protein or at least to get a clue
of it. Therefore, it is appropriate to search through as large amount of data as
possible to increase the probability of finding similar protein.

1.2 Nucleotide (DNA) Databases

Using nucleotide databases is not as common as using protein databases2. They
are searched only for similarities among sequences of one species (unlike protein
databases) which follows from the aims why they are analyzed, i.e.

– finding similarities in parts of nucleotide sequences which are not transcribed
to mRNA (non-coding sequences)

– checking whether someone else has already sequenced given segment of DNA
– checking whether given segment was sequenced incorrectly

1 Moreover more extensive sequence similarity can be viewed as evidence of common
ancestry, and therefore as a basis for reconstructing phylogenetic history of organisms
and their genes.

2 which is the reason why we have tested our method for protein sequences only, but
it can be used for nucleotide sequences without any change at all.

Index-Based Approach to Similarity Search in Protein and Nucl. Databases 69

1.3 Existing Prominent Databases

As comes out from previous, the role of databases in bioinformatics is of major
importance. Nowadays, there exist three most prominent databases of sequences
– American GenBank [8], European EMBL [2] (European Molecular Biology
Laboratory Data) and Japanese DDBJ [1] (DNA Data Bank of Japan), which
are not moderated (means that anybody well-founded can add a sequence into).

Besides these databases, there exist several other (mostly protein) databases.
In our experiments we used the Swiss-Prot [4] – a moderated database of pro-
teins. The Swiss-Prot together with TrEMBL (TRanslated EMBL) and PIR
(Protein Information Resource) constitute the UniProt database [22], which
serves as a central repository of protein sequences and their functions. As we
can see in Figure 1, the size of databases grows exponentially in time, so the
needs for more efficient methods grow as well.

1982 1986 1990 1994 1998 2002 2006

0
5

1
5

2
5

3
5

4
5

5
5

6
5

GenBank growth

Year

Base pairs of DNA (billions)
Sequences (millions)

1986 1990 1994 1998 2002 2006

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
Swiss-Prot growth

Year

Aminoacids (millions)
Sequences (10 thousands)

Fig. 1. Nucleotide and protein databases growth

2 Similarity Search in Sequence Databases

When searching for similarity between two sequences, there are three methods:

– analysis of the dot matrix
– dynamic programming solution
– heuristic methods using q-grams

All these methods compute a kind of biological similarity between two se-
quences. The similarity of two sequences is defined by an optimal alignment of
them. An alignment of two3 sequences is every such correspondence between let-
ters in both (sub)sequences (one written under the other), which can be achieved
by inserting gaps into either sequence. Naturally, among all possible alignments
we are interested in an optimal one – which is the alignment with best real-
value score (interpreted as sequence similarity). A particular method of scoring

3 There can be also multiple sequences mutually aligned for some purposes, but this
is out of scope of this paper.

70 David Hoksza, Tomáš Skopal

an alignment changes with method used (see next subsections), however, it is
always a sum over the scores between aligned letters/gaps.

Consequently, the similarity assessment (score of alignment) can be used in
retrieval of sequences from a database similar to a query sequence.

2.1 Dot Matrix Method

A dot matrix (dotplot) analysis is a method for finding possible alignments of
two sequences. In the dot matrix analysis we mark each of the axes with one
amino acid sequence and then mark each position in the matrix where the two
sequences match (have the same letters on given positions). Matching segments
can then be seen as diagonal rows of dots going from left (see Figure 2).4

This algorithm can be improved by use of sliding windows of given length5

(see Figure 2a,b). The window is successively placed to every position, while the
window on every position is checked for a diagonal occurrence. If the number of
matching letters in both sequences is above a fixed threshold (possibly according
to a scoring matrix, see below), then a dot is placed on the position of the upper
left corner of the window. Subsequently, short diagonals in the resulting plot can
be filtered out for better transparency(Figure 2c).

Afterwards, the dot matrix is visually checked for diagonals long enough to
be used as candidates for even longer alignment. Pairs of sequences showing
sufficient similarity are then further inspected with some other techniques (e.g.
tools using dynamic programming).

ARIPETIQIZLASTPFPTEA ARIPETIQIZLASTPFPTEA ARIPETIQIZLASTPFPTEA
• •A • • •A A
• • • • • •R R R

I • • • • • • •I I
P • •P P

• • •E E E
• • • • •T T T
•I I • •I
• • •Q Q Q
• • •I I I

Z Z Z
• • • • •L L L
• • • • • •A A A

S • • • • •S • •S
T • •T T

• • •P P P
• • • •F F F

• • • •P P P
T • • • • • •T T
E • • •E E •

A A A

A

I
P

S
T

T
E
A

ARIPETIQIZLASTPFPTEA

(a) (b) (c)

Fig. 2. Dot matrix

The dot matrix method is appropriate for visualisation and manual analy-
sis of partial alignments of two sequences, but it does not give us the optimal
alignment – especially if an alignment with gaps is our goal. To solve this prob-
lem, there exist algorithms based on dynamic programming which can compute
optimal alignment with gaps in O(mn) (where m,n are sequence lengths) time.
4 This method can also be used to finding reverse matchings (diagonals go from right

to left in that case).
5 When comparing nucleotide sequences, longer windows are used.

Index-Based Approach to Similarity Search in Protein and Nucl. Databases 71

With minor changes one can use the same algorithm for finding both, global and
local alignment. A global alignment of sequences is such an alignment where the
whole sequences must be aligned, whereas a local alignment methods look for
best alignment for any subsequences of the input sequences.

First of all we need to define a distance to measure similarity between two
sequences (possibly by use of an alignment). The simplest is the Hamming dis-
tance (HD) which is defined on two strings of equal lengths, and computes the
number of positions for which the corresponding symbols are different. Because
HD is a metric, it is often used when indexing sequences split to q-grams.

The Hamming distance is not suitable because it is sensitive to shifts in
sequences. Therefore, a better measure is the Levenshtein (or edit) distance
given by the minimum number of operations needed to transform one sequence
into the other, where an operation is an insertion, deletion, or replacement of a
single letter. The Levenshtein distance can be further extended with operation
weights. Every replacement, insertion or deletion can be penalized by a constant
value. Such an extended edit distance is called weighted edit distance.

However, when considering DNA or protein sequences, even weighted edit dis-
tance is not suitable. The reason is that probability of mutations from one amino
acid into another (appearing in an alignment) is dependent on the two particu-
lar amino acids involved (the same holds for nucleotides but this is not so often
used, since there are only four of them). To deal with this fact, a scoring matrix
is used which is a 20× 20 square matrix where on position [i, j] is the so-called
weight of mutation of amino acid i into amino acid j (if we use identity matrix
we get an ordinary edit distance). There are many different scoring matrices used
for different purposes (e.g. PAM matrices [7], BLOSUM matrices[9], etc.). The
scoring matrices used in bioinformatics contain scores interpreted as similarity
of two amino acids/nucleotides, so instead of distance measures we speak about
similarity measures (where the greater overall scores stand for greater overall
similarity). Hence, as opposite to Hamming or edit distance, an optimal scored
alignment is the one with highest overall score (see Figure 3).

Fig. 3. Global and local alignment (and their scores) of protein sequences
NPHGIIMGLAE and HGLGL according to BLOSUM62 scoring matrix

Global Alignment Measures. As mentioned earlier, there exist algorithms
for both, global and local alignment (see Figure 3). The first algorithm for global
alignment was published in 1970 by Needleman and Wunsch [13]. It makes use
of distance matrix where on one side of the matrix is the first sequence and
on the other the second one. We define a cell si,j = [i,j] of the matrix as the
optimal (maximal) score which belongs to prefixes of lengths i and j of the
aligned sequences. The recursive formula for filling distance matrix’s cell is:

72 David Hoksza, Tomáš Skopal

si,j = max

si−1,j + σ
si,j−1 + σ
si,j + δ(ai, bj)

(1)

where a and b represent the sequences to be aligned, σ is a score for gaps
and δ is scoring matrix. Since [i, j] contains the score of global alignment of the
i-long prefix of a and j-long prefix of b, the cell [|a|, |b|] contains the alignment
score for the whole sequences a, b.

Local Alignment Measures. Since we are more interested in matching sub-
sequences, the local alignment is applied more often in computing similarity
between biological sequences6. Local alignment of sequences a and b is finding a
subsequence S(a) of sequence a and a subsequence S(b) of sequence b, such that
global alignment of S(a) and S(b) provides the highest score. The algorithm for
local alignment can be seen as a modification of Needleman-Wunsch and was
published in 1981 by Smith and Waterman [20]. It modifies filling of the dis-
tance matrix by not allowing negative values. The optimal local alignment score
is then the maximum value in the distance matrix, which means there is no way
to increase the score with extending (or cutting) either of the two subsequences.
The recursive formula is adjusted in the following way:

si,j = max

0
si−1,j + σ
si,j−1 + σ
si,j + δ(ai, bj)

(2)

Finally, there is usually another modification which enables differentiating
between the opening and extending gap. Extending a gap is considerable less
penalized than opening a gap (i.e. two single gaps in alignment are more penal-
ized than a single two-letter gap).

2.2 Heuristic Approaches to Retrieval of Similar Sequences

The Smith-Watterman (SW) algorithm gives the optimal solution to local align-
ment but it is computationally expensive. Hence, there have been developed
cheaper heuristics which approximate the optimal local alignment. The first
wide-spread method of this type was the FASTA [15], which used short local
alignments as seeds that were further extended on both sides. Nowadays, BLAST
(Basic Local Alignment Tool) [3] algorithm is widely used, because in most cases
it is faster then FASTA and gives better results (suffers from less false dismissals
with respect to sequential retrieval using Smith-Watterman alignment). In short,
the BLAST algorithm can be described as follows:

1. Remove low complexity regions from the query sequence (those with no
meaningful alignment).

6 Global alignment could damage alignment of perfectly conserved domain.

Index-Based Approach to Similarity Search in Protein and Nucl. Databases 73

2. Generate all n-grams substrings of length n from query sequence.
3. Compute the similarity for every sequence of length n (on a given alphabet)

and each n-gram from the previous step.
4. Filter out sequences with similarity lower than a cut-off score (called neigh-

borhood word score threshold).
5. Remaining high-scoring sequences (organized in search tree) are then used

to search all database sequences for exact match.
6. High-scoring sequences within a given distance (those on the same diagonal

if we imagine sequences in dot matrix) are then connected together with
gapped alignment and these are being extended as long as the score grows7.
Such alignments are called high scoring pairs (HSP).

7. All HSPs with scores below a given threshold are excluded.
8. The scores of non-filtered sequences are refined by the classic Smith-Watterman

algorithm.

Statistical Relevance. Because of the heuristic nature of BLAST, it is im-
portant to have a method saying how good the found hits are (however, there is
no way to determine the retrieval error, say precision/recall in IR terminology).
We are also interested in determining whether the retrieved alignments are some
coincidence, or whether they really refer to a biological relation. The local align-
ments are statistically well understood, so we are able to say how relevant the
retrieved sequences are. This statistic evidence fits primarily to ungapped local
alignment, but it has been shown (mostly by computational experiments) that
it applies to gapped alignments, too.

We are interested whether the resulting score (either Smith-Watterman (SW)
or any other) has any statistical significance (otherwise the score alone is just a
number), hence, we have to take the score distribution into account, considering
the entire sequence space and a particular scoring matrix. We can derive an
expected number of sequences of lengths m and n with score at least S as

E = Kmne−λS (3)

where K and λ are characteristics of the SW score distribution. The E formula
is called the E-value for the score S [10].

The E-value as defined above does not take into consideration dealing with
more than two sequences, however, we should additionally take into account
the fact that probability of finding a sequence with given score depends also
on the number of sequences in the database or/and the query length. In order
to prevent the effect that finding a short sequence with given E-value has the
same probability as finding a longer sequence with the same E-value, we should
multiply the E-value by the total number of residues (letters) in the database and
obtain a new E-value (used by FASTA). Alternatively, instead of multiplying the
E-value by database size, we could adjust the E-value by distinguishing different
sequence lengths, since a query is more likely to be related to a long sequence
than to a shorter one (used by BLAST).
7 This applies to BLAST2 - previous versions of BLAST did not connect sequences

on diagonals (and therefore used higher value for cut-off score in step 4).

74 David Hoksza, Tomáš Skopal

3 Metric Sequence Indexing & Search

Since a particular method of sequence alignment can be viewed as a non-metric
distance/similarity measure, we had an idea to turn it into a distance metric
δ, which satisfies the metric properties (reflexivity, non-negativity, symmetry
and triangle inequality). Such a metric could be then utilized by various metric
access methods (MAMs) which have been designed to quickly search in databases
modeled in metric spaces [24]. Their common characteristics reside in utilizing
the triangle inequality to organize the database into metric regions, so that when
a query is processed (the metric space is queried for objects falling into the query
region), only the overlapping regions need to be searched. Basically, the MAMs
are designed to support range query and k-nearest neighbors (kNN) query. A
range query is defined by a center object and a query radius, so we ask for
objects which are within a predefined distance from the query object. On the
other hand, a kNN query asks for k nearest objects to the query object. Both
range and kNN queries are represented by ball query regions (the radius of kNN
ball is the distance to the k nearest neighbor), thus the searching by MAMs is
reduced to a geometric problem (searching for database objects falling into the
query regions/balls).

3.1 Creating the Metric

First, we have to decide which sequence similarity measure should be used. The
simplest solution would be the Smith-Waterman (SW) score. However, the prob-
lem with SW is that it is similarity measure, not a distance (greater scores mean
higher similarities). Another problem is that SW lacks statistical significance.
Therefore, the use of E-value is much better, since it is a distance and it is also
widely used in ranking the results retrieved by FASTA or BLAST. Due to this
choice, we can also compare our approach to the other methods.

If we want to use E-value for metric indexing, we need an equivalent metric.
As defined, the original E-value satisfies just the non-negativity property, but
it can be easily modified to satisfy also reflexivity and symmetry. To enforce
reflexivity, the definition of E-value can be modified in a way that identical
sequences have a zero E-value. This is not a problem because two identical
sequences are also most similar in mathematical and biological meaning (no other
sequence can be more similar). To satisfy the symmetry, we have to accomplish a
more substantial change. As mentioned in Section 2.2, the BLAST’s modification
of E-value takes into account the total number N of residues (letters) in database
and the length n of inspected database sequence, as follows:

E = Kmne−λSN/n (4)

If we change the role of query and database sequence, we get different values.
So we changed E-value to the following form:

E = Kmne−λSN/max(m,n) (5)

Index-Based Approach to Similarity Search in Protein and Nucl. Databases 75

where m is the length of query sequence. This is a minor change in statistical
relevance if we realize that an average length of query is very similar to the
average length of database sequences. As mentioned before, e.g. FASTA does
not take sequence lengths into account at all.

TriGen Algorithm. Up to now, we have turned the E-value into a semi-
metric (reflexive, non-negative, symmetric distance). The last step is to enforce
the triangle inequality, which is the hardest part. For this purpose we can use
the TriGen algorithm [17] designed for general-purpose modifications of unknown
semi-metrics into metrics (or approximations of metrics). Moreover, using TriGen
we can specify (by so-called T-error tolerance) to what extent the resulting
modified distance may violate the triangle inequality. While distances modified
into full metrics guarantee 100% precision of indexing by MAMs with respect to
the precision of sequential search, a modification which is only an approximation
of metric (more or less violating the triangle inequality) exhibits lower intrinsic
dimensionality [5] (i.e. better indexability) at the expense of lower precision of
indexing/retrieval. In principle, the TriGen algorithm applies a class of concave
modifiers such that the input semi-metric (violating triangle inequality) becomes
a metric (or semi-metric where the extent of triangle violation is reduced).

3.2 LAESA

The LAESA method [12] is a typical pivot-based MAM. In principle, m database
objects are selected to act as so-called pivots. Then each of the n database
objects to be inserted is mapped using this pivots into a vector of dimension m,
where into i-th coordinate the distance of the inserted object to the i-th pivot
is computed and stored. This way we obtain an n × m distance matrix which
serves as a metric index.

Whenever a query is to be processed, the query object is projected into the
pivot space the same way as if it would be inserted. Then the distance matrix is
sequentially searched and all the vectors which do not overlap the query region in
the pivot space are filtered out. The remaining candidate objects (corresponding
to the non-filtered vectors) are subsequently filtered in the original metric space.

The LAESA method is very powerful in its pruning effectiveness, however,
due to expensive selection of pivots and due to the sequential processing of
distance matrix its usage in dynamic database environments is limited.

3.3 M-tree & PM-tree

A typical tree-based MAM designed for database environments is the M-tree [6].
The concept of M-tree is a kind of generalization of R-tree into metric spaces.
Instead of R-tree’s MBRs, the M-tree recursively bounds the objects into balls
specified by a center data object and a ball radius (unlike R-tree the M-tree
cannot create a synthetic centroid, it must pick one of the indexed objects). The
inner nodes of an M-tree index contain routing entries, consisting of a region ball

76 David Hoksza, Tomáš Skopal

and a pointer to the subtree (all objects in a subtree must fall into the parent
region ball). The leaf nodes contain ground entries – the DB objects themselves.
For an M-tree hierarchy see an example in Figure 4a.

A range query in M-tree is processed by processing just the nodes the region
ball of which overlaps the query ball. A kNN query processing is similar, however,
the radius of query ball is unknown at the beginning, so it must be heuristically
updated during query evaluation.

Fig. 4. (a) M-tree (b) PM-tree

As a combination of LAESA and M-tree, the PM-tree [16, 19] makes use
of both, LAESA’s pivot-based indexing and M-tree’s hierarchical metric space
partitioning. The main difference is that the routing entries contain also a set
of m1 ≤ m rings (related to m1 of total pivots) which prune the region ball,
thus, the total ”volume” of a PM-tree’s data region is always smaller than an
equivalent M-tree region (see Figure 4b). The ground entries are extended by
rings as well, but in this case the number of rings used is different (m2 ≤ m).
By specifying m = m1 = m2 = 0 we get an ordinary M-tree.

Slim-down Algorithm. A particular hierarchy of M-tree’s (or PM-tree’s)
nested data regions can be far from optimal, which means the volumes of re-
gions can be very large, and they can also overlap significantly. This leads to
poor search efficiency, since the larger volumes/overlaps the greater probabil-
ity that a data region and the query region will overlap. To prevent such poor
hierarchies, the generalized Slim-Down algorithm [18] has been developed to op-
timize an already built (P)M-tree index. Although the ”slimming down” is an
expensive operation, it can speed up the subsequent querying up to 10x.

4 Experimental Results

As dataset we used random subset of the Swiss-Prot database of size 3000 with
total number of 1041027 amino acids. Another random 100 hundred sequences
have been chosen as query sequences.All of the sequences were of maximal length
1000 which is doesn’t cause any problem when we realize that there are only 9191
longer sequences out of 252616 in whole Swiss-prot which makes 3% (average se-
quence length is 365 in whole Swiss-prot and 335 in the reduced variant). These
longer sequences could then be treated in special way since they are just small

Index-Based Approach to Similarity Search in Protein and Nucl. Databases 77

part of the whole.
We don’t show time comparation in our tests because we do not have effecitive
implementation of Smith-Waterman yet, being the crucial component of the
running time. But our method could be easily compared to SSEARCH (part of
FASTA package) when we realize that SSEARCH is equivalent to sequence scan.
To be able to compare index based methods with BLAST we distinguish number
of distance computations from computational costs. We defined computational
costs here as number of comparing two letters. Therefore computational cost
of tree based methods are averaged as number of distance computations mul-
tiplied by the average size of distance matrix for Smith-Watterman which is
321 ∗ 321 = 103041. For possibility of comparing index-based methods with se-
quentional scan, we show number of distance computations too.
Computational costs of BLAST can be devided from description in section 2.2.
Average number of neighbouring words for our dataset of query sequences is 54
and takes 81784 operations (matching letters) to get them 8 , which gives us
245352 computational operations. This means that there was built search tree
with 54 items. Such a tree has aproximatly 6 levels. When searching for seeds for
the high scoring pairs, there have to be done 6 comparations with every position
of the database. Since every comparation of word with database costs 3 opera-
tions, the computation costs of BLAST in average are 6 ∗ 1041000 ∗ 3 = 1873800
operations. Number of operations done while finding neighbouring words and
finding high scoring pairs is insignificant in comparation with this number so we
do not take it into account. Therefore we state that in average case, computa-
tional costs of BLAST are 18738000 operations9.

Four indexing methods were tested - M-tree, PM-tree, slimmed PM-tree and
LAESA, each of them using the same set of distance modificators 10 genereted by
the TriGen algorithm. As can be seen in Figure 5a, when the zero error tolerance
is used, weight of the modificator causes that number of distance computations
is almost equivalent to sequence scan. When the weight is too big, it makes trina-
gle inequvality hold but for the price of increasing intrinsic dimension. However
M-tree performes slightly better then sequence scan which means that when
searching in the tree, not all of the nodes have been inspected (because of inner
nodes, number of objects in the tree exceeds 3000). On the other side, PM-tree
and slimmed PM-tree show worse result since there are aditional computations
to pivots (mapping the query). The most similar to sequential scan is LAESA
method, which uses constant number of distance computations independently
on range of the query.

The situation slightly changes when we allow small error (Figure 5b). This
causes that number of distance computations decrease about six percent com-
pared to zero error tolerance. Here, PM-tree and slimmed PM tree outperform
M-tree and the difference is about 1%. On the other hand LAESA showed just

8 found out empirically
9 We do not consider possible filtering of nonsignificant segments.

10 fractional power modificators were used

78 David Hoksza, Tomáš Skopal

2 3 4 5 6 7 8 9 11 13 16

5
0

1
0

0
1
5
0

2
0
0

2
5

0
3
0

0
3

5
0

Error tolerance 0

E-value

C
o
m

p
u
ta

ti
o
n

a
l
c
o
s
ts

 (
m

ili
o

n
s
)

M-tree
PM-tree(32,16)
SlimPM-tree(32,16)
LAESA(64)
BLAST

2 3 4 5 6 7 8 9 10 12 14

3
0

0
0

3
0

0
5

3
0

1
0

3
0

1
5

3
0

2
0

3
0

2
5

3
0

3
0

Error tolerance 0

E-value

D
is

ta
n

c
e

o
m

p
u

ta
ti
o

n
s

c

M-tree
PM-tree(32,16)
SlimPM-tree(32,16)
LAESA(64)
Sequential Scan

2 3 4 5 6 7 8 9 10 12 14

2
8

0
0

2
8

4
0

2
8

8
0

2
9

2
0

2
9

6
0

3
0

0
0

Error tolerance - 0.002

E-value

D
is

ta
n

c
e

 C
o

m
p

u
ta

ti
o

n
s M-tree

PM-tree(32,16)
SlimPM-tree(32,16)
LAESA(64)
Sequential Scan

2 3 4 5 6 7 8 9 10 12 14

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

Error tolerance - 0.002

E-value

C
o

m
p

u
ta

ti
o

n
a

l
c
o

s
ts

 (
m

ill
io

n
s
) M-tree

PM-tree(32,16)
SlimPM-tree(32,16)
LAESA(64)
BLAST

0.00 0.02 0.04 0.06 0.08 0.10

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

E-value 5

TriGen error tolerance

R
e

a
l
e

rr
o

r

M-tree
PM-tree(32,16)
SlimPM-tree(32,16)

0.00 0.02 0.04 0.06 0.08 0.10

2
0

0
6

0
0

1
0

0
0

1
4

0
0

1
8

0
0

2
2

0
0

2
6

0
0

3
0

0
0

E-value 5

TriGen error tolerance

D
is

ta
n

c
e

 c
o

m
p

u
ta

ti
o

n
s

M-tree
PM-tree(32,16)
SlimPM-tree(32,16)

(a) (b) (c)

Fig. 5. Relation between E-value and number of computations - range query (a,b) and
realation between real error and distance computatins (c)

slight improvement. But in both cases BLAST method is evidently more effective
since effctivity of the index is almost sequence scan even if small error is allowed.

Why PM-tree and slimmed PM-tree behave better when allowing some error?
Answer to this question can be seen on Figure 5c which shows on range query of
E-value five the relation between declared TriGen error tolerance and real error
experienced in test. Here we can see, that PM-tree real error growth more quickly
than the error of M-tree and moreover, we can see that slope of those lines are
almost inverse, which means that the distance computations gain of PM-tree is
counterbalanced by the error. From these two graphs can also be seen that for real
error 50%, there still have to be done approximately 1200 distance computations
which is about 120000000 computational operations. That means that if BLAST
would be such a bad hauristic that it would have just 50% successfulness, it still
would be noticeable more effective.

5 Conclusions

In this paper, we have have tested suitability of metric access indexing methods
for indexing protein sequences. It has been shown that these method are not
applicable to sequence alignment problem without their modification. This is
primarily because of quality of the data to be indexed and the distance func-
tion which is used to define similarity between them. This distance function is

Index-Based Approach to Similarity Search in Protein and Nucl. Databases 79

highly non-metric which demands strong modifications to it, to make it metric.
This modification distorts distances in a way that strongly increases intrinsic di-
mension of the data and therefore the efficiency of search is almost the same as
efficiency of sequential scan. But against sequentional scan it has that advantage
that precission can be defined and thus traded off for efficiency.
This learned facts can aim next resarch to several areas. To name a few:

– Examining TriGen modificators and finding such modificators, which would
minimize real error while distributing objects (i.e. sequences) in the space
in a way which will be appropriate for indexing methods (i.e. descreasing
intrinsic dimension).

– Modifying the search structures. For example examining possiblities of cut-
ting sequences to q-grams but being able to define arised error (caused by
splitting and thus losing information included in the whole sequence) and
(optimaly) minimalize it.

– Modifying computing of Smith-Waterman local alignment. The idea is to
change computing so that it will be faster and resulting scores won’t violate
properites of metric so much, as they do now (for example by using borders
to limit the computational space in the distance matrix).

Acknowledgments

This research has been partially supported by GAČR grant 201/05/P036 pro-
vided by the Czech Science Foundation. We would like to thank prof. Fatima
Cvrčková (Department of Plant Physiology, Faculty of Science, Charles Univer-
sity in Prague) for helping to get in touch with biologist point of view to the
problem and contributing to the paper with helpful comments.

References

1. DNA DataBank of Japan. www.ddbj.nig.ac.jp.

2. European Molecular Biology Laboratory Data. www.embl.org.

3. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res., 25:3389–3402, 1997.

4. A. Bairoch, B. Boeckmann, S. Ferro, and E. Gasteiger. Swiss-prot: Juggling be-
tween evolution and stability. Brief. Bioinform., 5:39–55, 2004.

5. E. Chávez and G. Navarro. A Probabilistic Spell for the Curse of Dimensionality.
In ALENEX’01, LNCS 2153, pages 147–160. Springer, 2001.

6. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In VLDB’97, pages 426–435, 1997.

7. M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model for evolutionary change
in proteins. Atlas of Protein Sequence and Structure, 5:345–352, 1978.

8. D. B. et al. Genbank. Nucleic Acids Res., 34(Database issue):D16–D20, 2006.

9. S. Henikoff and J. Henikoff. Amino acid substitution matrices from protein blocks.
Proc. Natl Acad. Sci. USA., 89:10915–10919, 1992.

80 David Hoksza, Tomáš Skopal

10. S. Karlin and S. Altschul. Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. In Proc. Natl. Acad.
Sci., volume 87, pages 2264–2268, 1990.

11. R. Mao, W. Xu, S. Ramakrishnan, G. Nuckolls, and D. Miranker. On optimizing
distance-based similarity search for biological databases. In Proc IEEE Comput
Syst Bioinform Conference, pages 351–61, 2005.

12. M. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour
approximating and eliminating search algorithm (AESA) with linear preprocessing
time and memory requirements. Pattern Recognition Letters, 15(1):9–17, 1994.

13. S. Needleman and C. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
biology, 48(3):443–453, 1970.

14. Z. Ning, A. Cox, and J. Mullikin. Ssaha: a fast search method for large dna
databases. Genome Research, 11(10):1725–1729, 2001.

15. W. Pearson and D. Lipman. Improved Tools for Biological Sequence Analysis.
Proc. Natl. Acad. Sci., 85:2444–2448, 1988.

16. T. Skopal. Pivoting M-tree: A Metric Access Method for Efficient Similarity
Search. In Proceedings of the 4th annual workshop DATESO, Desná, Czech Re-
public, ISBN 80-248-0457-3, also available at CEUR, Volume 98, ISSN 1613-0073,
http://www.ceur-ws.org/Vol-98, pages 21–31, 2004.

17. T. Skopal. On fast non-metric similarity search by metric access methods. In Proc.
10th International Conference on Extending Database Technology (EDBT’06),
LNCS 3896, pages 718–736. Springer, 2006.

18. T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Revisiting M-tree Building
Principles. In ADBIS, Dresden, pages 148–162. LNCS 2798, Springer, 2003.

19. T. Skopal, J. Pokorný, and V. Snášel. Nearest Neighbours Search using the PM-
tree. In DASFAA ’05, Beijing, China, pages 803–815. LNCS 3453, Springer, 2005.

20. T. Smith and M. Waterman. Identification of common molecular subsequences.
Jurnal of molecular biology, 147:195–197, 1981.

21. C. Weimin and K. Aberer. Efficient querying on genomic databases by using metric
space indexing techniques. In Proceedings of the 8th International Workshop on
Database and Expert Systems Applications, page 148, 1997.

22. C. Wu, R. Apweiler, A. Bairoch, D. Natale, W. Barker, B. Boeckmann, S. Ferro,
E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. Martin, R. Mazumder,
C. O’Donovan, N. Redaschi, and B. Suzek. The universal protein resource
(uniprot): an expanding universe of protein information. Nucleic Acids Res.,
34(Database issue)(1):D187–D191, 2006.

23. W. Xu and D. Miranker. A metric model of amino acid substitution. Bioinfor-
matics, 20(8):1214–1221, 2004.

24. P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach (Advances in Database Systems). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

Using BMH Algorithm to Solve Subset of XPath
Queries

David Toth

Dept. of Computer Science and Engineering,
FEE, Czech Technical University,

Karlovo Náměst́ı 13, 121 35 Praha 2, Czech Republic
tothd1@fel.cvut.cz

Using BMH algorithm to solve subset of XPath queries

David Toth1

1 Dept. of Computer Science and Engineering,
FEE, Czech Technical University,

Karlovo Náměstí 13, 121 35 Praha 2, Czech Republic
tothd1@fel.cvut.cz

Abstract. Boyer-Moore-Horspool (BMH) algorithm is commonly used to solve
text searching problems. In this paper is used to solve the constraint subset of
XPath queries offering effective algorithm to resolve such queries. XML can be
grasp as text file contains tags and its content; that kind of view to XML is used
in this work. We constraint XML document content and possible XPath que-
ries. This work focus on key ideas and problems appertaining XPath queries
execution using text search algorithm BMH.

1 Introduction

Many papers were published appertaining the XPath query effective execution issues.
Many authors concern many aspects of XML and XPath. In this paper we look in
detail how to solve part of XPath queries involving only path of nodes in the query
but not any functions. Another extensions are possible and in future works can be
exploited in more details; see into Conclusions and future works for more informa-
tion.

Why bother with XML and XPath? XML is special text file format, meta-
language, markup language (using tags instead of commands); XML can be repre-
sented by a tree where nodes represent tags and connections between nodes represent
relationship super-element and embedded element. XML can be used for many rea-
sons. Especially useful is using XML as data interchange format in internet environ-
ment. It is conceived as a tool assuring compatibility between different applications
possibly running on different platforms and using different inherent data paradigm
and formats. Today in B2B applications is XML widely used.

Of course XML has many other purposes. For example in XML documents can be
stored content of any magazine or generally paper. Such kind of XML documents are
known as document oriented XML; i.e. there is huge amount of text contrary to data
oriented XML documents where this is not generally true. In data oriented XML
documents are many tags and often as much as data itself. Finally the tag information
is itself also valuable information. Document oriented XML are typically intended to
use by humans in opposite to data oriented XML documents which are normally
designated for computers.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 81–88, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

82 David Toth

Here we try to prove that whenever data oriented XML documents are supposed
we can treat them as plain text files finding queried node(s) using BMH algorithm.
Only when the amount of text representing structure information (for simplicity let us
consider just tags) in XML file be the same order of magnitude as amount of text
representing stored data itself. This is big assumption which has to be preserved to
can legally speak about effective XPath query resolution.

The next section introduce basic BMH algorithm principle and show example of
using this algorithm. Another section acquaint XPath queries and selected subset
further elaborated. After come section named BMH in XPath where are introduced
and explained all considered XPath query execution algorithms based basically on
BMH from concrete queries to generic ones. Finally in Conclusions and future works
section assess gained results and procedures and outline extensions and future works
directions.

2 BMH Algorithm

After short introduction here we will treat BMH algorithm basics.
Here we deal with BMH (Boyer-Moore-Horspool) algorithm commonly used to

solve text searching problems. The basis of this approach inhere in a little preprocess-
ing of searching pattern and then searching the text forward but backwards from
pattern. That is the trick. That is how can be raise effectivity. There can be hopped (or
jumped) many irelevant letters (or generally parts of input stream). The number of
reading is therefore typically much more lesser than whole length of stream..

2.1 Preprocessing issues

What must be done during preprocessing phase? For any pattern there is a need for
create hopping table where must be pre-counted how many letters (or input symbols)
can be jumped after input sign and the appropriate sign from pattern has been read
and they do not match.

Let us show an example. Suppose input stream as: „Where are you going young
man?“ Furthermore assume we trying to find pattern: „you“.

The answer obviously is that the pattern is presented 2 times 1st at position 11 and
2nd at position 21. Naive approach lead us to read whole text i.e. 31 characters and
do at least the same number of comparisons.

When we try to use BMH we have to resolve how much can be hopped when some
letter is achieved. The preprocessed table should look like this:

y o u x
2 1 3 3

Which means that whenever compare of input letter and pattern letter do not match
we should jump ahead of 2, 1 or 3 characters depending on what letter is on input

Using BMH Algorithm to Solve Subset of XPath Queries 83

what is talking about the 1st line in the above table. Note that x mean any other sym-
bol than enumerated before x – in our case whatever symbol but y, o, u.

So the above example will be, using BMH algorithm, take just 16 readings.

2.2 How BMH algorithm operate?

First necessary variables:
 I position in input stream
 pat pattern

2.3 Semiformal BMH description (BMH algorithm)

1. preprocessing – the tab is calculated
2. begin
3. Go to the I where I = len(pat)

(initial position in the input text is set to the length of pattern)
4. repeat (until in input stream the end is not reached)
5. compare letters backwards from position I with pattern until they fit each other
6. when pattern is matched then

1. save the position of 1st matched occurence – store I into the array
2. go to the position of possible next occurence which is: I = I + 2*len(pat)

7. (ELSE) when pattern is not matched then
1. go ahead to the fartest position possible which is I = I + tab[K], where K is letter
of input text where was expected any different symbol

8. end.

Algorithm notes. len means function returning length of its string argument and tab
preprocessed table containing length of possible hops for all letters.

Useful source where formal BMH algorithm description is introduced, explained and
described using an example is for example [2].

After BMH algorithm basics were explained next section deal with XPath query
which we will subject of next investigation.

3 XPath queries

Now after the slim repetition of how BMH algorithm runs we will focus on XPath
queries. This section deal with investigated XPath query subset which is briefly intro-
duced.

XPath is derived from XML Path which suggests us it is about determining paths
in XML documents. In fact it is more complicated. Functions and other features must
be considered furthermore. But for the purpose of this paper we focus on simple que-
ries involving just nodes and paths.

84 David Toth

Generally there are two possibilities how to determine path using XPath. So called
relative paths and absolute paths. Absolute path always syntactically begins with the
sign for root of the XML document which is denoted as '/'. Absolute path is inevitably
derived from the root of the document. Result of such query can be none node found,
exactly one node in specified path or set of nodes of same name in specified path.
Relative queries on the other side mean that somewhere in the query this sequence '//'
is placed which means no matter of deep where the node will be found. Such kind of
a query is practically eminently useful but it is this kind of queries which means prob-
lems with effectivity. XPath queries examples follow.

First absolute queries:

/rootnode/node1/node3 – the result are all nodes appertaining <node3> elements
which are descendants of <node1> element which are descendants of <rootnode>
element.

/rootnode/node6 – the result of this XPath query are all <node6> elements which
are descendants of <rootnode> element.

Let us see now relative queries:

//node2 – such XPath query gives all <node2> elements in valid XML document.
//node4/node5 – the answer is: all <node5> elements whichs parents are <node4>.

And finally we will look at mixed queries:
/rootnode/node7//node8/node9 – the return all <node9> elements whichs parents

are <node8> elements placed however deep inside the element <node7> which has to
be direct descendant of <rootnode> element.

Many useful properties of XPath were omitted. We will treat about extensions in part
Conclusions and future works. XPath query somehow specify the path in tree struc-
ture of XML document. We will not need this imagination anymore. In this paper
linear conception of XML (XML viewed as a text file) will be sufficient. All about
XPath can be found in [4].

After XPath query subset was delimited we will in next section focus on how to
this subset can be implemented using BMH algorithm.

4 BMH in XPath

Now after we briefly examined BMH algorithm and supposed XPath queries we will
look at how to use BMH when evaluating XPath queries.

First the easiest case. Let us consider the following XPath query: //nodeX. So the
result of such a XPath query should be all elements named nodeX wherever inside the
XML document.

Of course we suppose the input XML document is well-formed XML document as
this term is commonly understand according to [3]. Furthermore we do not consider
CDATA section inside the XML document but it is not hard to imagine its subse-
quent incorporation. But here it would break our deliberations and diverge to another

Using BMH Algorithm to Solve Subset of XPath Queries 85

than key problems. Except CDATA we also do not consider comments in XML. Both
CDATA and comments can be easily incorporated to the proposed algorithms but it is
not the aim of this work to focus on every aspects. Rather we focus on key principles.
See the section Conclusions and future work for summarizing involving issues.

4.1 Semiformal simple algorithm description (simpleBMH)

1. use BMH algorithm to find asked pattern on input stream
2. for all found patterns must be verified the context

1. just a word in text inside an element but do not denote an element
(if it is the case then nothing happen, go further without writing into the re-
sults; this test can be done comparing symbols before the found pattern and
symbol '/' or '</')

2. it denotes an element and then there are two options
1. it is opening tag

(we should write the result into the output – position when the ele-
ment starts; opening tag it is if precede symbol '<')

2. it is closing tag
(we should write the result into the output – add the closing position
to the start position; closing tag it is if precede symbols '</')

The result will create pairs of beginning and ending positions individual element
found in the text. Here we can see the power of XML grasped as plain text file.

Now we can search nodeX in XML document using XPath very simple notation:
'//nodeX'. How long does this take? In order of magnitude as BMH itself. There is
only one or two comparisons more when pattern match and one possible writing into
the results (depending on if it is beginning or closing tag). So the performance will be
comparable as the performance of BMH itself which is described in detail and with
experimental results for example in [1].

Let us see how will the algorithm change when we focus on XPath queries using
absolute path in the beginning of the query. We will suppose such a query:
/rootnode//nodeX

4.2 Semiformal algorithm description for absolute paths only (apo-algorithm)

1. the beginning of input stream must exactly match '<rootnode'
 (as in the case of previous rumination)
 Note to the following point: (in fact we will use brute force to jump over the root-

node element attributes definitions and the possible content up to the first occur-
rence of any element inside rootnode)

2. repeat until the end of XML is reached
3. using brute force: find name of following element (second in absolute order in first

iteration) in text (in XML document)
1. if it is the element we looking for then

1. into the result write the beginning mark

86 David Toth

2. apply algorithm BMH (including preprocessing) with elements' end tag as
 pattern content; algorithm stop when first occurrence was found
3. into the result write the ending mark of this occurrence

2. else: apply algorithm BMH (including preprocessing) with elements' end tag as
 pattern content; algorithm stop when first occurrence was found

 (no writing to the results; only hopping is realized)

Now should be presented some mechanism for generic kind of query. We should use
previously elaborated, experienced and tested work. So we will use preceding algo-
rithms. Let us consider more generic query as: /rootnode/node1/node2/node3/nodeX.

4.3 Semiformal generic algorithm for only absolute paths (gab-algorithm)

1. do an extraction of node names into the field of names: nodext
2. let us consider L variable where will be increased the relative level of depth de-

pending on query structure; L = 2
3. let us consider MAX as number of nodes in path in query
4. the beginning of input stream must exactly match '<rootnode'
5. repeat until the end of XML is reached
6. using brute force: find name of following element in text (XML document) or end

tag nodext[L-1]
1. if it is the element we looking for (i.e. nodext[L]) then

1. L++ (increase L)
2. if L = MAX then

1. into the result write the beginning mark
2. apply algorithm BMH (including preprocessing) with elements'
 end tag as pattern content; algorithm stop when first occurrence
 was found
3. into the result write the ending mark of this occurrence

3. else:
1. go to 6.

2. if it is some other element
1. apply algorithm BMH (including preprocessing) with elements' end tag as
 pattern content; algorithm stop when first occurrence was found
 (hopping non requested element)

3. if it is reached end tag then
1. L-- (decrease L)

Now we'll try to extend algorithm for long relative queries as for example is this:
//node1/node2/nodeX.

4.4 Semiformal generic algorithm for only relative paths (ger-algorithm)

1. make extraction of nodes from query to the field: nodext
2. variable L determine the position in nodext – relative depth; L = 1

Using BMH Algorithm to Solve Subset of XPath Queries 87

3. let MAX denote number of nodes in a query
4. use BMH to find all opening tags: nodext[L] and for every occurrence found run

own thread continuing with 5.
5. use gab-algorithm from point 5

Finally we combine absolute path at the beginning and relative path in the end of
query. Suppose query like this one: /rootnode/node1/node2//node3/node4/nodeX.

4.5 Semiformal generic algorithm (gen-algorithm)

1. make extraction of nodes from a given query into two fields
1. nodextabs – containing nodes up to sign '//' and
2. nodextrel – containing nodes from symbol '//' till the end of a query

2. variable L1 will serve as relative depth for first part
3. variable L2 will serve as relative deptg for second query part
4. MAX1 denotes number of nodes in first part of a query
5. MAX2 denotes number of nodes in second part of a query
6. use gab-algorithm with nodextabs, L1 and MAX1

1. for every result use ger-algorithm with, nodextrel, L2, MAX2

Author hope this summarizing of thinking can help when inventing new procedures,
algorithms and other ruminating related issues. Future works should include also
implementation of proposed algorithms. About future works and conclusions concern
following section.

5 Conclusions and future works

Most important made assumptions are these:

1. XML document is mainly data-oriented and do not contain CDATA sections.
2. XPath query do not contain anything else but node names and sign '/' or '//'.

We stated relatively strong preconditions. None of those should have great impact on
key ideas presented here. All such assumptions should let us concentrate on key and
main issues of discussed problem: how can be effectively used BMH algorithm to
answer constraint subset of XPath queries. These preconditions are limited but can be
step by step eliminated. This should be the aim of future works; choose little pieces of
what is not yet implemented and incorporate it to the solution which let grow the
picture of whole.

Much work can be done here on this field. Every supposition could be subdue to
rational critics and proposed algorithm should be extend to encompass every such a
conditions' solution.

All proposed algorithm variants should be experimentally examined as well as all
possible following extensions and modifications.

88 David Toth

One of future works should respect document oriented XML. There are several
ways how to solve this problem. One of such could be invent special object structure
a priory allowing jump over parts which should be hopped – variation of state space
cutting algorithm.

Consequences of proposed algorithm for execution of XPath queries. Follow
most important consequences when using a variant of proposed algorithms.

1. Only data oriented XML documents will be treated truly effectively because of

there will be not present long text passages to be searched.
2. When node names containing just plain text are queried and document contain

predominantly nodes containing mostly numbers, which is often the case of data-
oriented XML documents, then the effectivity will dramatically increase – all
numbers will be as a consequence of using BMH algorithm, hopped.

3. With longer queried tag name the proposed algorithm will be more efficient.
4. It has none or just little impact when the length of queried tag name has only 1, 2

or 3 characters.

On one side stated consequences can be grasped as drawbacks but when we focus
on special area of data handling here may be especially useful to integrate proposed
algorithm as for example when exporting numerical data for XSLT to expose them
into the web. Majority of above stated consequences appertain this special case where
could be proposed algorithm implemented.

References

1. Lecroq, T.: Experimental Results on String Matching Algorithms. Software—practice and
experience, vol. 25(7), John Wiley & Sons, Ltd. (1995) 727–765

2. Lovis, C., Baud, R.H.: Fast Exact String Pattern-matching Algorithms Adapted to the Char-
acteristics of the Medical Language. J Am Med Inform Assoc. 7(4) (2000) 378–391.

3. XML 1.0, W3C Recommendation of Extensible Markup Language (XML) 1.0 (Fourth Edi-
tion), http://www.w3.org/TR/REC-xml

4. XPath, W3C Recommendation of XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath

Shape Extraction Framework for Similarity
Search in Image Databases

Jan Kĺıma and Tomáš Skopal

Charles University in Prague, FMP, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague, Czech Republic
irenicus@volny.cz, tomas.skopal@mff.cuni.cz

Shape Extraction Framework for Similarity
Search in Image Databases

Jan Kĺıma and Tomáš Skopal

Charles University in Prague, FMP, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague, Czech Republic
irenicus@volny.cz, tomas.skopal@mff.cuni.cz

Abstract. The task of similarity search in image databases has been
studied for decades, while there have been many feature extraction tech-
niques proposed. Among the mass of low-level techniques dealing with
color, texture, layout, etc., an extraction of shapes provides better se-
mantic description of the content in raster image. However, even such
specific task as shape extraction is very complex, so the mere knowledge
of particular raster transformation and shape-extraction techniques does
not give us an answer what methods should be preferred and how to
combine them, in order to achieve the desired effect in similarity search.
In this paper we propose a framework consisting of low-level intercon-
nectable components, which allows the user to easily configure the flow
of transformations leading to shape extraction. Based on experiments,
we also propose typical scenarios of transformation flow, with respect to
the best shape-based description of the image content.

1 Introduction

Similarity search in image databases [10] is becoming increasingly important, due
to rapidly growing volumes of available image data. Simultaneously, the text-
based image retrieval systems become useless, since the requirements on manual
annotation exceed human possibilities and resources. The metadata-based search
systems are of similar kind, we need an additional explicit information to effec-
tively describe multimedia objects (e.g. structured semantic description, as class
hierarchies or ontologies), which is not available in most cases.1 The only practi-
cable way how to search the vast volumes of raw image data is the content-based
similarity search, i.e. we consider the real content of each particular raster image
(e.g. a photography), where the images are ranked according to similarity to a
query image (the example). Only such images are retrieved, which have been
ranked as sufficiently similar to the query image. The similarity measure returns
a real-valued similarity score for any two models of multimedia objects.

Unlike other similarity search applications, the task of highly semantic content-
based search in image/video databases is extremely difficult. Because of gener-
ally unrestricted origination of a particular raster image, its visual content is
1 The image search at images.google.com is a successful example of metadata-based

engine, where the metadata are extracted from web pages referencing the images.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 89–102, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

90 Jan Kĺıma, Tomáš Skopal

not structured and, on the other side, hides rich semantics (as perceived by hu-
man). The most general techniques providing extraction of distinguished features
from an image are based on processing of low-level characteristics, like color his-
tograms, texture correlograms, color moments, color layout (possibly considered
under spatial segmentation). Unfortunately, the low-level features emphasize just
local/global relationships between pixels (their colors, respectively), hence, they
do not capture high-level (semantic) features. In turn, usage of the low-level
features in similarity search tasks leads to poor retrieval results, which is often
referred to as the ”semantic gap” [10].

In real-world applications, a design of high-level feature extraction is re-
stricted to the domain-specific image databases. For instance, images of human
faces can be processed so that biometric features (like eyes, nose, chin, etc.) are
identified and properly represented. Although domain-specific image retrieval
systems reach high effectiveness in precision/recall, they cannot be used to man-
age heterogeneous collections, e.g. images on web.

1.1 Shape Extraction

The shapes (contours, bounded surfaces) in an image could be understood as
a medium-level feature, since shape is an entity recognized also by human’s
perception (unlike low-level features). Moreover, shape is a practical feature for
query-by-sketch support (i.e. a query-by-example where the ”example” consists
of user-drawn strokes), where extraction of colors or textures is meaningless.

Shape Reconstruction. The most common technique is to vectorize the con-
tiguous lines or areas in the raster image. Prior to this, the image has to be pre-
processed still on the raster basis (edge detection [17], smoothing, morphologic
operations, skeletonization, etc.). The subsequent raster-to-vector transforma-
tion step follows (e.g. a binary mask is vectorized into a set of (poly)lines).

Naturally, we are not done at this moment, the hardest task is to filter and
combine the ”tangle” of short lines (as typically produced) into several (or even
single) distinguished major shapes (polylines/polygons). This involves polyline
simplification [11], removal of artifacts, line connection, etc. The most complex
but invaluable part of shape reconstruction should derive the prototypical shape
which is approximated by the vectorized information obtained so far.

Shape Representation & Similarity Measuring. Once we have sufficiently
simplified shapes found in an image, we have to represent them in order to
support measuring of similar shapes. The polygonal representation itself is not
very suitable for similarity measuring, because of high sensitivity to translation,
scale, rotation, orientation, noise, distortion, skew, vertex spacing/offset, etc.
More likely, the raw shape is often transformed into a single vector or time series
[5, 7, 9], where the shape characteristics are preserved but the transformation
non-invariant characteristics are removed. The time series representations are
usually measured by Euclidean distance, Dynamic time warping [4, 7], Longest
common subsequence [15].

Shape Extraction Framework for Similarity Search in Image Databases 91

1.2 Motivation & Paper Contributions

As overviewed above, the process of shape extraction (starting from the raster
image and producing a vector or time series) is very complex task, where there do
not exist general recommendations about particular transformation/extraction
steps. In this paper, we propose a component-based framework allowing to en-
capsulate and connect various image/vector-processing algorithms. Hence, a net-
work consisting of many components can be easily created, through which a
particular shape extraction scenario is configured. Following this framework, we
have also implemented a catalogue of basic components which, when properly
connected, can provide an effective environment for shape extraction experimen-
tation. Finally, we present several domain scenarios for shape-extraction based
on experimental results.

1.3 Related Work

Although we are aware of many existing image processing libraries, most of them
lack support for end-user dataflow configuration or vector processing.

“Filters” [1] is a library of image, video and vector processing functions, based
on idea of configurable filters that perform various tasks. Dataflow configuration
is obtained by hardcoding or via python scripts.

“JaGrLib” [12] is a 2D/3D graphics library primarily aimed for educational
purposes. JaGrLib offers both XML and GUI oriented dataflow configuration,
but currently has limited shape extraction capabilities.

2 IVP Framework

The idea of Image and Vector Processing Framework [2] is to separate objects
that usually figure in image processing (color bitmaps, grayscale bitmaps, binary
bitmaps, gradient maps, vectors, polylines, etc.) and algorithms which work with
these objects on an input→ output basis. Each algorithm can be considered as a
black box that expects certain input data and produces a defined kind of output
data. With this point of view the whole shape extraction application reduces to
a network of algorithms that send data to each other. An example of the idea is
depicted in Figure 1.

This gives a view into the IVPF design: it’s advantageous to code and store
algorithms separately, the role of the client application is to allow user to specify
which algorithms should be used, and also their output→ input dependence. In
the final effect, many specialized applications can be implemented (configured
respectively) at high application level, just by specifying the algorithms, their
settings and mutual dependencies.

2.1 Interface & Components

Each particular component class encapsulating2 an algorithm (as mentioned
above) must implement the IIVPFComponent interface in such a fashion that all
2 The framework has been implemented in .NET framework 2.0.

92 Jan Kĺıma, Tomáš Skopal

A

B C D

E F G

POLYLINE
8
0
0
VERTEX
8
0
10
...

POLYLINE
8
0
0
VERTEX
8
0
10
...

Fig. 1. Algorithms as black boxes: The example shows algorithms A-G which form
an application with arrows representing their output → input dependence. A is an
input algorithm that vectorizes the input image and sends the resulting vectors into
the network. B-C and E-F-G are branches that transform their vector input somehow.
D takes two vectorial inputs and chooses one, based on certain criteria. Then both D
and G save their outputs in specified formats (to a file/stream/anything else).

public component features are accessible in a simple and transparent way. In
particular, using IIVPFComponent interface the components are interconnected
(port registration), and checked for compatibility.

Higher Level Functionality. At a higher application level, the components
are just configured and their ports connected together to create a network. This
can be done either via GUI or by loading configuration/connections from an
XML file. During the whole network execution, all components are run starting
from pure output components (no input ports) and propagating the intermediate
data through the entire network to pure input components (no output ports).
The whole approach enables to change the behavior of the network in two ways:

– by changing component(s) configuration
– by changing the structure of the entire component network

Shape Extraction Framework for Similarity Search in Image Databases 93

3 Component Catalogue

In this section we propose several components already implemented in the IVP
framework. In order to ease the understanding, we use the following formal
declaration of a component:

type of input → component name (parameters) → type of output

where the type of input/output we distinguish either bitmap (any 2D bitmap of
color, intensity, gradient, etc.) or vectors (collection of polygons/polylines). The
single arrow ’→’ means there is just a single type of connection to input/output
supported, while the double arrow ’⇒’ supports several types of input/output3.
The parameters declared in parentheses are component-specific, thus they have
to be configured by the user.

3.1 Image Processing Components

The first class provides components serving as the basic-processing tools, which
do eliminate resolution dependencies, filter the noise, and separate pixels within
a specified range of colors.

Image Loader Component
ImageFromFile (FileName) ⇒ bitmap (of colors) + bitmap (of intensities)

To process an image, it must be loaded from a file first. During this phase
grayscale image representation is computed and offered simultaneously.

Image Resample Component
bitmap (colors)→ ImageResample (ResamplingType, DesiredSize) ⇒ bitmap (col-
ors) + bitmap (intensities)
The input image might be either too small or very large for the sake of further
processing. With this component it’s easy to resize it suitably using Nearest
Point, Bilinear and Biquadratic resampling.

Thresholding Component
bitmap (colors) → ImageThresholding (RGBUpper, RGBLower) → bitmap (binary)

There exist special types of images like maps or drawings where it makes little
sense to do full edge detection. Instead, certain parts of interest can be extracted
by simple interval thresholding.

Gaussian Smoothing Component
bitmap(intensity)→GaussianIntensityFilter(WindowSize,Sigma)→bitmap(intensity)

In noisy images where one would expect problematic edge detection, smoothing
step is required. Gaussian smoothing is a well-established method and the im-
plementation allows to configure both the Sigma parameter of the Gaussian
function and the window size.
3 Naturally, an output port of one component can be connected to input ports of

multiple components (providing we obey port compatibility).

94 Jan Kĺıma, Tomáš Skopal

3.2 Edge Detection Components

For edge detection, the Canny operator [8] was chosen as a main approach, as it is
acceptably stable and configurable. The edge detection is performed in multiple
stages, starting on an intensity (grayscale) bitmap, which usually involve

1. Source image smoothing (typically by Gaussian convolution)
2. Gradient approximation using first derivative operator
3. Non-maximum suppression
4. Hysteresis thresholding to identify edge pixels

The Canny operator is formed by a chain of components (the latter described
below): GaussianIntensityFilter → GradientOperator → NonMaximaSuppression

→ HysteresisThresholding. For an example of the dataflow see Figure 2.

Fig. 2. An example showing input image, image’s gradient map and marked edge pixels.

Gradient Operator Component
bitmap (intensity) → GradientOperator (OperatorType) → bitmap (gradients)

Uses simple first derivative operators (Sobel, Prewitt, Roberts-Cross) to obtain
local gradient magnitudes and directions (in 45 degree steps) for each pixel.

Non Maximum Suppression Component
bitmap (gradients) → NonMaximaSuppression → bitmap (gradient)

Gradient map obtained by first derivative operator often contains thick regions
with high gradient magnitude but to extract edges one would like areas with high
gradient magnitude to be as much thin as possible. Non-maximum suppression
archives this by ignoring pixels where the gradient magnitude is not maximal in
the gradient direction.

Hysteresis Thresholding Component
bitmap (gradients)→ HysteresisThresholding (Lower, Upper) → bitmap (binary)

Based on two thresholds gradient map is traced and edge pixels are extracted.
Each pixel with gradient magnitude greater than the Upper threshold is marked
as edge immediately. Remaining pixels are marked as edges only if they have their
gradient magnitude greater than the Lower threshold and if they are connected
to some existing edge pixel chain.

Shape Extraction Framework for Similarity Search in Image Databases 95

3.3 Binary Image Processing Components

The following components process binary bitmap inputs (e.g. obtained from the
edge detection). These components could be used to simplification of contours.

Erosion And Dilatation Component
bitmap(binary)→ErosionDilatation (OperationType, MaskType)→bitmap(binary)

Refinement of binary images is often needed (to close gaps, round curved ob-
jects, etc.). The operators of erosion, dilatation, opening and closing (combined
with a properly chosen mask) are usually a good choice to handle some input
image defects.

Thinning Component
bitmap (binary) → Thinning (ThinningType) → bitmap (binary)

Thinning components that implement Stendiford [14] and Zhang-Suen [16] thin-
ning algorithms are handy when it comes to polish results given by edge de-
tection, or when there is a need to turn thick objects into one pixel thin lines.
A staircase removal to refine lines contained within the binary image also fits
in this category of algorithms. An example of the thinning process is given in
Figure 3 (the first two images).

Fig. 3. Input binary image along with its thinned form and refined vector result con-
taining n = 18 polylines.

Contouring Component
bitmap (binary) → Contouring → bitmap (binary)

In some cases (when the binary image contains thick objects), an information about
contour is more valuable than the object’s thinned form. Implemented method is based
on approach found in [3] although it uses complete image matrix instead of run length
encoding as the binary image representation.

Vectorization Component
bitmap (binary) → Vectorization → vectors

The vectorization component is responsible to turn binary image with marked edge
pixels into a set of vectors (polylines). It is based on approach mentioned by [3] or [6].

First, the input binary mask is went through by shifting a 3x3 window over every
pixel in order to mark critical points. Those are either endpoints (pixels with only one
neighbor within the 3x3 window) or intersections (pixels with more than 2 neighbors).
In second phase all polylines between critical points are traced. Another pass through

96 Jan Kĺıma, Tomáš Skopal

the image is needed then to identify closed polylines that were left untouched by the
previous step. The resulting pixel chains are turned immediately into polylines along
with junction and connectivity information (i.e. with the topology).

3.4 Vector Processing Components

Once we get a vectorized form of shape, we move to waters of geometry and graphs
algorithms. Although we got rid of the raster information, we now face a tangle of
(poly)lines to be meaningfully managed.

Polyline Simplification Component
vectors → PolylineSimplification(Type, Error) → vectors

The polylines obtained from vectorization usually carry much more information than
required. It also happens that there are undesired irregularities in polylines caused
by straightforward vectorization. Hence, a polyline simplification is needed. Multiple
approaches are implemented, including those of Douglas-Peucker [11] and Rosin-West
[13].
Artifact Removal Component
vectors→ShortVectorRemoval(ArtifactsType,ArtifactCharacteristics)→vectors

Aside from polyline simplification, the resulting vector image contains artifacts at
higher logical level. For a list list o typical artifacts see Figure 4. Artifact removal
component handles these artifacts based on configuration and produces result with
reduced noise and longer (more meaningful) vectors, as shown in Figure 4.

a

e

e

b

d

c

c

Fig. 4. The first picture gives example of the most typical small artifacts – a. uncon-
nected polylines b. insignificant cycles c. 1-connected polylines d. spurious loops e.
insignificant junction connections. The second picture shows an input vectorized image.
On the third picture there is output of the artifact removal component (configured to
ignore short artifacts) and Douglas-Peucker polyline simplification algorithm.

Iterative Pruning
vectors → IterativePruning (UpperBound) → vectors

One of the goals of vector processing is to find a given number of the most significant
vectors to represent the original image. With this component an experiment was made
to find if a metric based on vector length is a good criterion for selection the most
significant vectors.

The algorithm (our original design) works as follows: An upper bound is selected
by user that represents the maximum number of vectors to obtain. First, all vectors

Shape Extraction Framework for Similarity Search in Image Databases 97

Fig. 5. The first picture shows line drawing containing n = 12, 617 polylines made of
m = 38, 433 line segments. In second picture is the result of vector removal component
(with upperbound = 20) combined with Douglas-Peucker simplification. The output
contains n = 19 polylines with m = 473 line segments.

are sorted with respect to their lengths. The algorithm works in iterations and tends
toward the desired number of vectors. In order to guarantee convergence, a half of the
vectors are expected to be thrown away in each iteration (the number of vectors to
throw away can be easily configured as well, giving slower of faster convergence).

Which vectors should be thrown away is decided upon their lengths(short vectors
are considered first) and upon the knowledge similar to that used in Artifact Removal
Component (most probable artifacts are thrown away first). A typical output is de-
picted in Figure 5.

Polyline Connection Component
vectors→PolylineConnection(Scenarios,ScenariosCharacteristics)→vectors

It happens (especially in edge detection) that a significant polyline gets divided into
multiple parts as a result of inaccurate thresholding, noise or overlap.

Three phase algorithm is employed to join parts together into bigger entities. The
first phase operates on polylines that have their endpoints very close to each other
and can be joined together without additional heuristics. Second phase takes care of
larger gaps between endpoints with respect to multiple criteria (vector length, distance,
orientation, etc.). Third phase tries to handle disconnected corners. Figure 6 features
typical scenarios of these three stages. All phases are configurable and optionally offer
many important concepts like double sided check, identical angle orientation check etc.
Many of these concepts are mentioned in [6].

a

b

c

c d

Fig. 6. An example demonstrating typical scenarios when connecting polylines: a. con-
nection of lines based on their orientation, angle, . . . to create one longer polyline b.
closing disrupted cycles c. connecting near endpoints to form a corner d. connecting
far endpoints to form a corner, guessing corner shape.

98 Jan Kĺıma, Tomáš Skopal

3.5 Vector Output Components

The last group of components provides an output to external storage (now file). Besides
an one-to-one export to a well-known format (like WMF, DXF), components in this
class cover also secondary feature extraction techniques needed for particular task –
typically representations for subsequent similarity measuring/search.

Vectors Output Component
vectors → VectorToFile(FileName, Format)

This component saves its vector input into a specified format (DXF, textfile, etc.).

Angles Extraction Component
vectors → AnglesToFile(FileName, AngleType, NumberOfAngles)

A specialized feature component transforming polylines to (time) series. Each polyline
is normalized first by splitting it to a number of parts of the same length. A set of
angles is then saved to the output. The angles can be measured as the smaller angles
between each pair of successive line segments, as clockwise (or counter-clockwise) angles
between them, or as angles between each line segment and the X-axis.

4 Domain Scenarios

The components of the previously introduced catalogue have been designed in order
to easily create scenarios suitable for extraction of simple shapes. Hence, we are pri-
marily interested in simplified representation of shapes inside an image, rather than
in a comprehensive image-to-shape transformation preserving as much information as
possible.

A simplified shape could serve as a descriptor involved in measuring similarity of
two images (based on shapes found inside). The requirement on small-sized descriptor is
justified by handling the shape information by similarity measure. Since the similarity
measure is supposed to be evaluated many times on entities of a huge image database,
the similarity measuring should be as fast (yet precise) as possible. However, this goal
can be achieved by a smart shape extraction providing prototypical descriptors. An
image represented by a single (or very few) polylines/polygons limited to several tens
or hundreds of vertices (say up to 1 kilobyte) – this is our desirable descriptor.

On the other side, we are aware of the difficulties when trying to establish such
a simple descriptor. Therefore, we have performed experimentation on various images
(photography, drawing, etc.) and tried to assemble several configurations of component
networks (called domain scenarios) which gave us the best results for a particular
image type (with respect to desirable descriptor properties). In the following sections
we present three such scenarios.

4.1 Drawing

As for the drawings, the vectorization task is slightly simpler thanks to the fact that the
source image contains the desired information in an easily identifiable form (monochro-
matic strokes describing shapes, colored areas in case of cartoons, etc.). The extracted
layer or layers described by binary images can be further processed by means of thin-
ning (in case of strokes) or contour extraction (in case of thick areas). The result often

Shape Extraction Framework for Similarity Search in Image Databases 99

Fig. 7. Scenario 1 – Drawing.

embodies only a low level of noise and can be directly used as is or further simplified. In
Figure 7 see the scheme of component configuration and interconnection under Drawing
scenario. Note that the two branches lead to two different types of shape extraction
(skeleton and contour). For an example of data flow regarding to the Drawing scenario,
see Figure 8.

Fig. 8. Scenario 1 – Drawing – Example of data flow.

4.2 Simple Object

For high contrast images containing unsophisticated shapes, the edge detection alone
is a reliable way to extract required feature information. When this is known, the
artifact removal is a relatively safe operation without the risk of removing important
features. A reconnection of disconnected lines (which follows then) almost completely
reconstructs the full shape information. Finally, the polyline simplification should be
done to straighten jagged lines and minimize the produced number of line segments.
In Figure 10 see the scheme of component configuration and interconnection under the
Simple object scenario. For an example of data flow, see Figure 10.

100 Jan Kĺıma, Tomáš Skopal

Fig. 9. Scenario 2 – Simple object.

Fig. 10. Scenario 2 – Simple object – Example of data flow.

4.3 Complex Scene

In real-world images (photos), the edge detection cannot guarantee getting clean shapes,
on the contrary there are usually huge amounts of false detected or unwanted edges.
The iterative pruning is supposed to take care of most of the ”trash” in the vector
output and even then, maximum effort must be directed into connecting disrupted
polylines, corner detection and polygonal approximation. In Figure 11 see the scheme
of component configuration and interconnection under the Complex scene scenario.
For an example of data flow, see Figure 12.

Fig. 11. Scenario 3 – Complex scene.

Shape Extraction Framework for Similarity Search in Image Databases 101

Fig. 12. Scenario 3 – Complex scene – Example of data flow.

5 Conclusions & Future Work

In this paper we have presented a highly configurable framework for shape extraction
from raster images. Based on the framework, we have proposed a catalogue of com-
ponents, which have been designed to be easily configured into a network. Based on
experiments, we have recommended three domain scenarios for extraction of simple
shapes, in order to create useful descriptors for similarity search applications.

In the future we would like to investigate similarity measures suitable for shape-
based similarity search. An extraction of simple prototypical shapes from images (as
proposed in this paper) is crucial for similarity measuring, so it is an unavoidable
step when trying to ”bridge the semantic gap” in image retrieval. Furthermore, we
would like to automate the scenario recommendation process (where each component in
scenario evaluates the goodness of what it produces), resulting in a kind of unsupervised
extraction technique.

Acknowledgments.

This research has been partially supported by GAČR grant 201/05/P036 provided by
the Czech Science Foundation.

References

1. Filters library (available at http://sourceforge.net/projects/filters/).

2. Image and vector processing framework (available at siret.ms.mff.cuni.cz).

3. S. V. Ablameyko. Introduction to Interpretation of Graphic Images. SPIE, 1997.

102 Jan Kĺıma, Tomáš Skopal

4. T. Adamek and N. O’Connor. Efficient contour-based shape representation and
matching. In MIR ’03: Proceedings of the 5th ACM SIGMM international workshop
on Multimedia information retrieval, pages 138–143, New York, NY, USA, 2003.
ACM Press.

5. T. Adamek and N. E. O’Connor. A multiscale representation method for nonrigid
shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Techn.,
14(5):742–753, 2004.

6. P. Altman. Digitalization of map. Master’s thesis, Charles University, Department
of Software and Computer Science Education, 2004.

7. I. Bartolini and M. Patella. Warp: Accurate retrieval of shapes using phase of
fourier descriptors and time warping distance. IEEE Trans. Pattern Anal. Mach.
Intell., 27(1):142–147, 2005. Member-Paolo Ciaccia.

8. J. Canny. A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., 8(6):679–698, 1986.

9. A. Cardone, S. K. Gupta, and M. Karnik. A survey of shape similarity assess-
ment algorithms for product design and manufacturing applications. Journal of
Computing and Information Science in Engineering, 3(2):109–118, 2003.

10. V. Castelli and L. D. Bergman, editors. Image Databases : Search and Retrieval
of Digital Imagery. Wiley-Inter., 2002.

11. D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number
of points required to represent a line or its caricature. Canadian Cartographer,
10(2):112–122, 1973.

12. J. Pelikán and J. Kostlivý. Jagrlib: Library for computer graphics education. In
WSCG (Posters), pages 125–128, 2004.

13. P. L. Rosin and G. A. W. West. Segmentation of edges into lines and arcs. Image
Vision Comput., 7(2):109–114, 1989.

14. F. Stentiford and R. Mortimer. Some new heuristics for thinning binary hand-
printed characters for ocr. IEEE Transactions on Systems Man and Cybernetics,
13(1):81–84, 1983.

15. M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-
dimensional time-series with support for multiple distance measures. In KDD ’03:
Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 216–225, New York, NY, USA, 2003. ACM Press.

16. T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital patterns.
Commun. ACM, 27(3):236–239, 1984.

17. D. Ziou and S. Tabbone. Edge detection techniques - an overview. International
Journal of Pattern Recognition and Image Analysis, 8:537–559, 1998.

Inductive Models of User Preferences for
Semantic Web

Alan Eckhardt

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

alan.eckhardt@mff.cuni.cz

Inductive models of user preferences for
semantic web

Alan Eckhardt

Charles University in Prague
alan.eckhardt@mff.cuni.cz

Abstract. User preferences became recently a hot topic. The massive
use of internet shops and social webs require the presence of a user mod-
elling, which helps users to orient them selfs on a page. There are many
different approaches to model user preferences. In this paper, we will
overview the current state-of-the-art in the area of acquisition of user
preferences and their induction. Main focus will be on the models of user
preferences and on the induction of these models, but also the process of
extracting preferences from the user behaviour will be studied. We will
also present our contribution to the probabilistic user models.

1 Introduction

The user preference modelling plays an important role in the current web. In-
ternet shops need to help the user to find the product he/she searches for, social
webs may suggest a contact that the user wants. The process of acquisition of
user’s preferences starts with the acquisition of known preferences (e.g. from the
user behaviour) and then using these known preferences to get the user’s pref-
erences of other objects. In this paper, an example of a user who is buying a
digital camera will be used. In Section 2, several user models will be presented
and in Section 3, some of current methods of induction of user preferences will
be described, including our own probabilistic model.

1.1 A use case for the induction of user preferences

We will present a typical use case for the induction of user preferences. We will
describe a complex system for the extraction of information from the web and
for the presentation of collected information to the user. This system will be
aimed to help the user to find a camera that fits best his needs. Whole system
proposition is in Figure 1.

The first task of this system is to collect data from various sources from the
internet. Information is stored in various forms, most often in HTML format,
and it has to be transformed to a computer-readable form (Semantic data).
The typical computer-readable form is RDF [2] - a language of triples of the
form (subject, predicate, object). Extension of RDF is OWL [1] which is one of
standard ontology languages. Ontologies can be also used to annotate raw text

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 103–114, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

104 Alan Eckhardt

data from the web. This transformation is called the ‘semantic annotation’ and
there are many methods performing semantic annotation, though their accuracy
and universality may be questioned. However, studying the semantic annotation
is not the aim of this work, it is one of components in whole process.

With semantically annotated data or with online RDF sources, we may pre-
sent the integrated information to the user. Several works (e.g. [8]) concern the
graphical user interface that represents the semantic data. The task is to present
the most important objects to the user in a such way that he/she will notice
them before noticing the other objects.

The inductive methods enable to determine which objects are important
and which are not. The process of determining the importance of an object is
iteratively executed, it may be triggered e.g. by some user behaviour, for example
by clicking on some object that is not considered important. Interpreting user
behaviour is another part of whole process.

The interpreted behaviour is then used to generate a user preference model.
This can be done by an already known inductive method. This user preference
model will be then used to alter the appearance of the web page, for presenting
preferred objects etc. This information can be also used by other servers, in case
of a distributed computation.

In our work, we will focus on the induction process - the induction of prefer-
ence model from some rated objects.

Fig. 1. Complex system for user preferences on the web

2 Models of user preferences

We will use the following notation - u1, ..., uk ∈ U for the users, o1, ..., on ∈ O for
the objects, a1

1, ..., a
m
1 for the attribute values of the object o1 and A1, ..., Am ∈ A

for the attributes of objects. When speaking only of one object, we will also use
only o for object and a1, ..., am for its attribute values. Often, all objects are

Inductive Models of User Preferences for Semantic Web 105

from the same domain and they will have the same set of attributes. For that
reason we will be interested mainly in the attribute values. We will denote the
user’s preference of an object as P (o), meaning how much object o is preferred.
We will use the notation P1(o), which means the preference of the user u1 on the
object o, when we want to explicitly denote the user. The range of P depends on
user model used, some of them do not have direct preference, e.g. the preference
relations studied in Section 2.2.

We now briefly distinguish several types of attribute domains, as was done
in [5]. The first domain type is nominal. These domains have no ordering and
are mainly text based. Typical example may be the color or the manufacturer.
Second type are ordinal domains, on which exists some ordering, but not unit.
For example set Big, Medium, Small may form an ordinal domain. When a unit
of measure is added, we get interval domains - for example {1, 0.2, 0, -0.4, -1}.
Finally, ratio scales have also an element 0 explicitly defined. Example of ratio
scale may be the price, the number of megapixels, the weight etc. We will refer
to both ratio and interval domains as numerical domains. In real data, most
frequent are nominal and interval/ratio domains. Ordinal domains are created
with a user influence - a user will say that every object that weights more than
600g is heavy, above 200g is medium and less than 200g is light.

2.1 Boolean preference

Boolean user preference model is used in some methods, where the user prefer-
ence model is not explicitly mentioned. This model distinguish only two states
of an object - either preferred or non-preferred. This is very simple approach
with little semantic, but may be used when lot of computing power is required.
In these cases, preference is represented by a vector of n bits, we will note this
vector v(u) : U → [0, 1]n. Operations on these vectors are fast when only binary
operations like and, or, xor etc. are needed. These operations may be sufficient
for some inductive methods but not for others. For example, this model can be
successfully used in the collaborative filtering, which is described in Section 3.2.
Comparison of two user preferences.

Computing the similarity of two users may be computed in following way

s(u1, u2) = 1−
n∑

i=1

(v(u1) xor v(u2))[i]/n.

The sum in equation expresses the number of ratings, where both user disagree,
e.g. object is preferred for u1 and non-preferred for u2. If we based the similarity
on common preferences of u1 and u2, it will be influenced by the number of rated
objects, which is not desirable. If this fact is of no relevance, alternative way for
computing similarity may be

s(u1, u2) =
n∑

i=1

(v(u1) and v(u2))[i]/n.

106 Alan Eckhardt

Computing the similarity of two users is essential for methods like collaborative
filtering. Surprisingly, there are not many articles concerning this problematic.
Further investigation and research in this area may reveal interesting ideas.

2.2 Preference relations

Preference relations are the oldest model of user preferences models, its de-
scription may be found e.g. in [15]. Basic idea behind preference relations is to
characterize the relation between objects o1 and o2. We can say that o1 is more
preferred than o2, o1 is equal to o2, o1 is incomparable to o2 or that o1 is a little
better than o2 but not much. For the strict preference, we traditionally denote
this relation as P . Then P (o1, o2) states that o1 is more preferred than o2. For
equivalence of two objects, we use I, e.g. I(o1, o2) means that o1 is as preferred
as o2. Finally, relation R is created as union of P and I, R(o1, o2) meaning o1

is equal or preferred to o2. For incomparability, relation J is introduced. Then
J(o1, o2) means that o1 and o2 are incomparable.

We left out the case when o1 is a little better than o2. We may create new
relation Q, so that Q(o1, o2) states that o1 is a little better than o2. By a simple
extension, set of relation Q1, ..., Qn will represent the fact that o1 is a little better
than o2, with Q1 representing the lowest difference of preference of o1 and o2

and Qn the highest difference.
Properties of relations determine properties of preferences. There are several

properties, such as the existence of a minimum or the completeness (linearity)
of the relation. For deeper insight in these properties, we again recommend [15],
which is specialized survey of preference relations.

All these structures may be extended to valued structures. One special case
is many valued logic, studied more in depth in 2.3. An example of a valued
structure is µ(P (a, b)) : O2 → [0, 1]. The interval [0, 1] may be replaced by any
other linear numerical structure, and it represents the degree (truth value) of the
relation. Valued relations may successfully replace relations Q1, ..., Qn, which are
a middle step between standard relations and valued relations.
Comparison of two user preferences.

When we want to compare preferences of two users, we have to compare
two preference relations. When relation is ordered linearly, we compare two or-
dered lists of objects. In that case, we may count the number of permutation
between both lists, which is traditional measure of computing the similarity (or
the distance, in this case). However, this may be not the best distance used,
because it makes no difference of distance between permuted objects. Switching
two neighbour objects makes less change than switching first and last object.

In [14] the distance of two interval fuzzy preference relations is described.
However, it can’t be simply used as a generalization of simple preference relation,
because it will degrade into simple ‘equal’ or ‘not equal’ semantics.

Inductive Models of User Preferences for Semantic Web 107

2.3 Many valued logic

Many valued logic is an extension of the traditional two valued logic. In the
two valued logic, a variable may be either true or false, in the many valued
logic a whole set of possible truth values is introduced, often denoted as T . T
should form a lattice, typical case is a linear structure and the most used is
interval [0, 1]. The set T will represent the set of preference values where 1 is
most preferred and 0 is least preferred. Other structures than [0, 1] are possible
to use, for example discrete set {Worst, Worse, Neutral, Better, Best} or {One
star, Two stars, Three stars, Four stars, Five stars} may be relevant in some
cases. We will interpret the truth value as a degree of preference.

When creating this extension of the two valued logic, we must define a new
semantics for logical operators, predicates and quantifiers. This definition can
be found for example in [13], but this is not of major interest in this work.

We will use two structures from the many valued logic - the first are fuzzy
functions of an attribute domain and the second is an aggregation function. A
fuzzy function represents user’s ordering and normalization of a domain. For
example, consider the attribute price. Most people prefer low prices over high
prices. In figure 2,a) we may see an example of the fuzzy function for price.

Fig. 2. Fuzzy function of price (a) and an example of a more complicated aggregation
function (b)

An aggregation function is used to aggregate several truth values, or prefer-
ences, into one truth value, therefore it is a function @ : Tm → T . There are few
restrictions on an aggregation function - it must be monotone in all variables,
and @(0, .., 0) = 0 and @(1, .., 1) = 1. An aggregation function is very suitable
for the modeling of the user preferences of the complex objects. The user aggre-
gates attributes of an object into the preference of the object itself. An example
of an aggregation function may be

@U1 (MPix U1(x), Fast U1(x),Cheap U1(x)) =
5 ∗MPix U1(x) + 1 ∗ Fast U1(x) + 3 ∗ Cheap U1(x)

9

108 Alan Eckhardt

Symbols MPix, Fast and Cheap denotes fuzzy sets of particular attributes. E.g.
Cheap U1(D50) represents how camera D50 is cheap for U1.

We consider the weighted average as a good example of a user fuzzy function.
It has clear semantics, because we can see directly, which of the attributes are
important for the user and which are not. Even more, from the weight we can
deduce how much important an attribute is. However, many more aggregation
functions that fits better to psychological aspects of human decision process may
be represented. An example of a more complicated aggregation function is in
Figure 2,b). These two mechanisms allow us to create very flexible model of user
preferences and moreover, the aggregation function models also user decision
process.

3 Inductive methods

In this section, we will examine several inductive methods that are used to create
a user preference model from some input. The user preference model is often
independent of the inductive method, the input may be represented in several
ways but often the paradigm of object with some attributes is expected.

Most of the methods expect a training set of objects, which are supposed
to belong to ‘classes’. These classes of objects in the training set may have
different forms, depending on the model of user preferences we are using. For
example, when using many valued logic, one class may be o : P (o) ∈ [0, 0.1]. Some
of the models of user preferences we have described above do not have a direct
interpretation as classes. With preference relations, we have only comparison
between two objects. We assume that a method will transform user preferences
into several (possibly discrete) classes. For preference relations we may order
objects and associate a weight corresponding to the position in the ordered set.

3.1 Inductive logic programming

Inductive logic programming is a method to obtain a logic program. This pro-
gram may be very general, in our case, it will represent rules that user uses in
decision process. After application of these rules to an object, the preference of
that object should be obtained. We will describe only predicate logic programs,
which are more expressive than sentential logic programs. An introduction to
induction of logic programs may be found in [11].

Rules have a head and a body. The head of a rule is a single predicate and
the body is a conjunction of predicates. When using fuzzy predicate logic, each
predicate has also value that represents the truth value of the predicate. For
simplicity (and because of space limitation), we will describe two-valued logic
program.

For example, following rules may represent user preferences of cameras

GoodMPix(camera) <- MPix(camera)>5;
GoodWeight(camera) <- Weight(camera)<700 & Weight(camera)>300;
GoodCamera(camera) <- GoodMPix(camera) & GoodWeight(camera);

Inductive Models of User Preferences for Semantic Web 109

Inductive process works with this input

1. The background theory B.
2. Positive examples E+.
3. Negative examples E−.

Background theory is used to infer new statements H (hypothesis) about exam-
ples. Both E+ and E− are formulas, but E− have empty head, e.g.

<- GoodCamera(D50);
<- GoodCamera(D40);

On the other side, positive examples have empty body, e.g.

GoodCamera(D200) <- ;
GoodCamera(D2x) <- ;

We present also an example of a background knowledge B:

Weight(D2x)=12 <- ;
Megapixels(D2x)=1150 <- ;

Four conditions must be fulfilled

1. Prior satisfiability B & E− 2 ¤
2. Posterior satisfiability B & E− & H 2 ¤.
3. Prior necessity B 2 E+.
4. Posterior sufficiency B & H ² E+.

The symbol ¤ represent the contradiction or false. The meaning of these condi-
tion is clear - with B and E− we should not get a contradiction, e.g. E− should
comply to the background knowledge. With the B, E− and H we should not
get a contradiction either. On the other hand, we want that examples are not
deducible from B itself, only with addition of H.

Now we will describe a general algorithm of hypothesis construction, as pro-
posed in [11].
QH = Initialize();
do

Delete H from QH;
Choose rules r1, ..., rk ∈ R to be applied to H;
Apply r1, ..., rk to H, obtaining H1, ...,Hn;
Add H1, ..., Hn to QH;
Prune QH;

while not Stop-criterion(QH)

QH is a set of candidates to hypothesis and R is a set of rules, which transform
H. An example of a rule may be dropping a clause or adding a clause to the
body of H. During each step, a hypothesis H and rules that will be applied
to H are chosen. Result of the application of rules on H are then stored in

110 Alan Eckhardt

QH and candidate set is pruned. Pruning means that useless candidates are
deleted. Implementation of each of methods Delete, Choose, Prune and Stop-
criterion may be different. Also the set of available rules R may differ across
implementations.

An example of application of a rule on a hypothesis GoodCamera(D2x) <- ;
may be
GoodCamera(camera) <- Megapixels(camera)=12;
or
GoodCamera(camera) <- Weight(camera)=1150;
This is an example of a generalization rule, whose result must be verified on E+

and E−.
The hypothesis should be completely correct, i.e. it should have the Posterior

sufficiency property. However, if we relax this property, a kind of probabilistic
rules will be generated. The probabilistic approach is further studied in 3.4.

3.2 Collaborative filtering

Collaborative filtering represent widely used method for acquisition of user pref-
erences. It is based on assumption, that the preference of user u0 on object o
will be the same as the preference of users u1, ..., uk that are ‘similar’ to u0. The
similarity of users is based on similarity of ratings on objects. Many collaborative
filtering methods are described in [10].

This method requires a lot of ratings of objects by a lot of users. For com-
puting the similarity of users, we need a lot of object ratings, for accuracy of
computing the rating of object o, we need a lot of users similar to u0.

There are several different algorithms for collaborative filtering. The first and
most simple is K-NN, the K nearest neighbor. This is most intuitive algorithm
- for a user u0, we find the K nearest users u1, ..., uK . The distance is computed
by the similarity of users’ ratings, for example

s(ui, uj) =

√√√√
n∑

l=1

(Pi(ol)− Pj(ol))2 (1)

Having these K nearest neighbours, we may compute the rating of objects as
average of users’ ratings

P0(oi) =
K∑

j=1

(Pj(oi))/K (2)

Another method of computing new ratings is to use a naive Bayes classifier [6].
For each object o, we construct a separate Bayes classifier. Input of the network
are the ratings of all objects other than o. Bayes network will answer the question
”What is the value P (o), when the user rated other objects this way?”. Bayes
network learns its parameters from the ratings of users that have rated o.

Inductive Models of User Preferences for Semantic Web 111

Other methods are considered as a content filtering methods - they work
with the objects and their properties rather then with the preferences of other
users. However, both approaches are often combined. Collaborative filtering can
not be appropriately used for new objects, which have not yet been rated by
any user. For this reason, some kind of the content filtering is also used and the
results of both methods are combined together.

However, some of the presented methods may be used both on other users’
ratings and the properties of objects, or both together.

3.3 Decision trees and rules

Decision trees are well known structure from the data mining theory, they are
used to model user decision process (or any decision process). Decision trees are
oriented trees with class names in leaves and a rule associated to each inner
node. An example of a decision tree which models user preferences of digital
cameras is in figure 3. We can see that cameras with at least 10 megapixels are
good, cameras that costs more than 500$ are bad.

Fig. 3. An example of a decision tree

Theory of the induction of the decision trees may be found in [12]. Induction
of a decision tree is discussed mainly for discrete attributes with few values.
Decision trees were extended to fuzzy decision trees, one of a new contribution
is in [5], older one is [3].

Basic induction procedure starts with a ‘training set’, which is a set of ob-
jects with known classes. From these objects, a tree is constructed and then it
is verified on a test set of objects, which is also a set of objects with known at-
tributes. The construction is typically a top-down algorithm. During each step,
all possible splits are considered and the most appropriate one is chosen. The
appropriateness is measured with an ‘impurity measure’. Impurity measure mea-
sures how evenly the data are spread in classes. When all objects are only in one
class, impurity measure is 0, when all classes contain same number of objects, im-
purity measure should be 1. Most used is entropy-based impurity measure ([12])
and Gini index ([4]). The structure of a tree depends mainly on the impurity
measure used during its construction.

112 Alan Eckhardt

3.4 Probabilistic methods

Probabilistic methods use probability as a method of inducing user preference.
There are several possible approaches to statistical interpretation of preference
data, e.g. [9]. Usage of probability is reasonable when working with user prefer-
ences, because few users have consistent preferences. Often, an exception from
a general rule occurs. This exception have to be handled explicitly in non-
probabilistic methods, but it creates no problem in the probabilistic methods.
For example in inductive logic programming, we can assign a probability to each
rule, denoting how much the rule is true in general, or in decision trees the
probability would be associated to each left node.

Probabilistic model for boolean preference model. The probabilistic pref-
erence model proposed in [9] is based on two measures - the first is the actual
user preference and the second is the accessibility (or the frequency) of the ob-
ject. The second one is important because when trying to induce user preferences
from user behaviour it is apparent that user will rather examine frequent items
than rare items just because they are more frequent.

The preference of an object is Pref(x) = f(x|V), where V is a user profile
or a user history and f returns the preference value of object x. Objects have
again several attributes, in [9] called ‘features’. The preference of an object is
computed as

Pref(x) = 1/|X|
∑

a∈X

Pref(a), (3)

e.g. it uses the average of attributes values preferences. The problem of finding
Pref(a) is then analyzed, actually in the similar way as in our previous work
[7]. We will compare these approaches in Section 3.4. The suggestion in [9] is to
use formula

Pref(a) = I(X(a); V) = log
P (X(a)|V)
P (X(a))

(4)

where X(a) is the set of objects containing a. In other words, attribute value a
is preferred, if the probability that the user selects an object with a is higher
than the probability of the occurrence of an object with a in the whole set of
objects.

Probabilistic model for many valued logic. A probabilistic model for the
many valued logic is our contribution. It is aimed on nominal attributes and
uses only weighted average as aggregation function. We concentrate on the case,
when we know preferences of some objects and user aggregation function but
not the preference of attribute values.

We are missing the preference of an attribute value a which is the value
of attribute Ak. But we know the preferences of objects and the aggregation

Inductive Models of User Preferences for Semantic Web 113

function. We will consider the set X(a) of objects which have the attribute
value a. We will look into the distribution of the preference of these objects.
When most of the objects in X(a) have high preference, attribute value a will
also have high preference. Formally,

P (a) =

∑
o∈X(a) P (o)

| {o ∈ X(a)} | . (5)

The ratio between the weight of the attribute Ak in aggregation function @
and the sum of the weights of all attributes represents the probability that the
preference is computed correctly. It is denoted formally in the following equation

P (Ak) =
W (@, Ak)∑

i=1,..,m W (@, Ai)
, (6)

where W (@, Aj) is the weight of attribute Aj in @. The preference of an object
is influenced more by an attribute with a big weight than by an attribute with a
small weight. Therefore this method is useful mainly for the attributes with big
weight.

Computing preference of one attribute value a may be costly when the num-
ber of objects with a is big. However, higher number of objects with a means
also higher precision of this method. Naturally, this method is only useful for
the domains with discrete values, especially non ordered domains like color or
manufacturer. This method can’t be successfully used for continuous domains,
because there will be very few objects with the same attribute value. However,
we may divide these continuous domains to a set of discrete intervals, and use
the method proposed above on these intervals.

Comparison with our model. Our model is an extension over the model
proposed in [9]. There are two aspects in which our approaches differ

1. In [9] the boolean user model is used (implicitly). We use many-valued logic
model, which is more general.

2. The preference of an object is computed in [9] as a simple average of prefer-
ence of its attributes. In our model, weighted average is used.

However, there is a similarity in our approaches - we use the preference of
objects for acquiring the preference of attribute values. This is an inverse process
to deduction, where the preference of an object is computed from the preference
of its attribute values.

4 Conclusion

In this paper, we have reviewed some of the main user preference models. There
are other models as well, their complete listing is beyond the scope of this paper,
we recommend [15] to the interested reader. The user model is used in a web

114 Alan Eckhardt

system to better present data to the user or to alter his/her query in order to
the results of the query actually better fit his/her preferences.

The creation of the user model is often done by inductive methods, which
were studied in this paper in Section 3. We presented methods that are used
for induction of user preferences and one probabilistic model for boolean user
preferences. We have developed a similar approach for many valued logic, which
is more general and flexible than the method studied in section 3.4. The precision
and the computational cost of our approach is still to be tested on real data.
These experiments are however beyond the scope of this paper, which is an
overview of methods used for the induction of the user preferences.

Acknowledgment

Supported by Czech projects MSM 0021620838, 1ET 100300517 and
1ET 100300419.

References

1. Owl, ontology web language . http://www.w3.org/TR/owl-features/.
2. Rdf data format. http://www.w3.org/TR/rdf-primer/.
3. B. Apolloni, G. Zamponi, and A. M. Zanaboni. Learning fuzzy decision trees.

Neural Networks, 11(5):885–895, 1998.
4. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression

Trees. Chapman & Hall, New York, 1993.
5. K. Cao-Van. Supervised Ranking, from semantics to algorithms. Ph.D. dissertation,

Ghent University, 2003.
6. P. Domingos and M. J. Pazzani. On the optimality of the simple bayesian classifier

under zero-one loss. Machine Learning, 29(2-3):103–130, 1997.
7. A. Eckhardt. Methods for finding best answer with different user preferences, In

Czech only, Master’s thesis, Charles University in Prague. 2006.
8. Lars Hult, Magnus Irestig, Jonas Lundberg Design Perspectives. Human-Computer

Interaction. Vol. 21, No. 1, Pages 5-48, 2006.
9. S. Y. Jung, J.-H. Hong, and T.-S. Kim. A statistical model for user preference.

Knowledge and Data Engineering, IEEE Transactions on, 17(6):834– 843, June
2005.

10. B. Marlin. Collaborative filtering: A machine learning perspective. Master’s thesis,
University of Toronto, 2004.

11. S. Muggleton and L. D. Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629–679, 1994.

12. J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, 1986.
13. P. Vojtáš. Fuzzy logic programming. Fuzzy Sets and Systems. 124,3 (2001) 361-370
14. Z. Xu. On compatibility of interval fuzzy preference relations. Fuzzy Optimization

and Decision Making, 3(3):217–225, 2004.
15. M. Öztürké, A. Tsoukias, and P. Vincke. Preference modelling. Multiple Criteria

Decision Analysis: State of the Art Surveys. Springer New York, 2006.

Improvement of Text Compression Parameters
Using Cluster Analysis

Jǐŕı Dvorský, Jan Martinovič

Dept. of Computer Science, VŠB – Technical University Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{jiri.dvorsky,jan.martinovic}@vsb.cz

Improvement of text compression parameters
using cluster analysis

Jǐŕı Dvorský, Jan Martinovič

Dept. of Computer Science, VB - Technical University Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{jiri.dvorsky,jan.martinovic}@vsb.cz

Abstract. Several actions are usually performed when document is ap-
pended to textual database in information retrieval system. The most
frequent actions are compression of the document and cluster analysis of
the textual database to improve quality of answers to users’ queries. The
information retrieved from the clustering can be very helpful in compres-
sion. Word-based compression using information about cluster hierarchy
is presented in this paper. Some experimental results are provided at the
end of the paper.

1 Introduction

The modern information society produces immense quantities of textual informa-
tion. Storing text effectively and searching necessary information in stored texts
are the tasks of Information Retrieval Systems (IRS). Information retrieval sys-
tems [1] constitute a class of program tools for processing, storing and selecting
data that are texts. An IRS is accessed by a user who needs to obtain certain
information (document) from this system to solve a problem. Such information
is called relevant. Various documents are suitable to users to various extents.
Therefore, we also speak of a document relevancy ratio. When searching infor-
mation in an IRS, a system user submits his or her requirement, a query, and
awaits a result in the form of a set of documents selected by the system as
documents matching the user requirement, i.e. matching the user’s query.

It is clear that the size of an IRS increases with the increasing size of available
external memories. The information explosion can be avoided basically in two
ways:

1. Extensively - by purchasing higher capacity memories, or
2. Intensively - by storing data in memories in a better way.

The first solution is not interesting in terms of research. The key to the
second solution is data compression. The database of a typical IRS is a textual
database, which stores all information that is necessary for the function of the
IRS. Textual databases typically consist of the three following parts:

– full texts from documents that form a document collection

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 115–126, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

116 Jǐŕı Dvorský, Jan Martinovič

– data structures for searching documents
– list of document identifiers and of their attributes and other auxiliary struc-

tures

Haskin claims in [15] that the size of textual database auxiliary structures
makes up 50% to 300% of the size of original documents, this implies that a
textual database is a suitable material for compression. It is only necessary to
use the several lossless compression methods to save space.

However, the problem of compression in IRS is not as simple as it seems at
first sight. On the one hand, compression saves space for data, while, on the other
hand, it may entail a certain operation overhead (i.e. adding certain amount of
time to the cost of accessing the data). Also, the space saving must be significant
to be useful. Therefore, the objective is not to compress the textual database as
a whole. This usually does not lead to good results since individual parts of an
IRS contain redundancies of different types; different data structure types are
based on a different model, according to which it is possible to determine the
best compression method.

Experience shows that it is useful to consider, analyze and design the best
compression method when storing extensive textual databases. It also proves to
be desirable to study highly specialized compression methods that are convenient
only for a certain data type in an IRS. Tens of megabytes can be saved either
saving one byte in data structures or by improving compression ratio of text
compression in an IRS.

This paper will focus on text compression methods suitable for IRS. Factors
significantly influencing compression methods that are suitable for IRS include:
compression ratio, decompression speed, the possibility of decompressing the
document, and connection with searching [26].

The aim of this paper is to extend of existing word-based compression methods
with hierarchical agglomerative clustering to improve compression performance,
especially compression ratio.

The paper is organized as follows. Sections 2 and 3 provide an outline about
word-based compression methods. Section 4 briefly describes clustering methods.
In section 5 characterization of our approach is provided. Experimental results
are discussed in section 6. Short conclusion is provided in section 7.

2 Word-based compression

The compression algorithm transforms input data that contains a certain re-
dundancy to output data, in which redundancy is reduced to a minimum. The
input and the output of data compression algorithms are generally strings of
characters over a certain alphabet. There are no requirements concerning the
alphabet. The selection of the alphabet is therefore a question of choice, which
is influenced by various perspectives.

The search for a suitable alphabet will proceed from the syntactical structure
of natural languages: character → syllable → word → sentence. Pertaining to
this structure a certain correspondence can be discovered between the language

Improvement of Text Compression Parameters Using Cluster Analysis 117

structure and possible alphabets. Each level represents one potential alphabet.
The first level is represented by a character-based alphabet. The next possible
level is an alphabet of syllables. Here we face the problem of identifying syllables
in the text [18]. Much greater possibilities are offered by the third level – word-
based alphabet.

A compression method based on an alphabet of words, which will be called
the word-based compression method, regards text as a sequence of words1 in a
certain language. The application of irregular distribution of individual word
occurrence probabilities is then assumed during compression in statistical com-
pression methods, or the clustering of words into language syntactical structures
is assumed in dictionary methods. It is presupposed that the language structure
controls not only characters but also words. Here are some examples:

– fixed phrases, e.g. ”How do you do?”
– constructions based on grammar, e.g. constructions with an article - ”the

best”, phrasal verb - ”to be interested in”
– constructions based on the contents of the text, e.g. ”data compression”,

”word based” are frequently repeated in this paper

It is also presupposed that these constructions are repeated and that it is
possible to achieve a certain compression on the basis of this repetition. It is not
presupposed that the text consist only of hapax legomena2 – even though this
assumption can be used as well.

3 Word-based compression methods

The first widely accessible description is that of Bentley et al. [2] (see also Ryabko
[25]), who proposed that a dictionary of words parsed from the text should
be coupled with codewords that correspond to MTF numbers. Moffat [20] also
experimented with word-based models, and showed that for a range of data files
the MTF transformation was less effective than a straightforward entropy code
in those experiments, arithmetic coding. A similar word-based model is available
as part of the arithmetic coding implementation of Moffat et al. [21].

Moffat [20] also investigated first-order and second-order word-based models,
in which one or two words are used to condition the probability distribution used
by the entropy coding stage (respectively). Other authors have made use of word-
based models since then including Horspool and Cormack [16], Zobel and Moffat
[27], and Moffat et al. [22]. de Moura et al. [5] have extended the idea of word-
based compression to what is called the spaceless words approach, which can be
considered as special case of eliminating of victim [7].

1 Sequences of spaces, punctuation between two words is called nonword. HTML or
XML tags are considered as the third part of word-based alphabet in the case of
compression of HTML/XML document. Words, nonwords and tags are called tokens
in general.

2 Hapax legomenon – a word with only one occurrence in the examined text.

118 Jǐŕı Dvorský, Jan Martinovič

Huffword compression method was designed by Moffat and Zobel in 1994
[26]. HuffWord is a compression method that is specialized in texts and uses a
word-based alphabet. The compression is based on the so-called Huffman canonic
coding. The authors of the HuffWord claim a compression ratio of about 30%.

3.1 WLZW and WBW methods

The beginning of the WLZW method dates back to 1998 when its first variant
and the first results were published [6, 9]. Other modifications and results can be
found in [10, 13, 11]. The WBW method is newer and its beginning dates back
to 2001 [12].

Scheme of WLZW and WBW compression algorithms Figure 1(a) shows
a schematic structure of compression algorithms WLZW and WBW. The figure
clearly shows that both compression methods can be roughly divided into two
parts that are named front end and back end. Both compression methods process
document texts in two passes. The division of compression methods into two
parts corresponds with those passes. Some parts are not active at all in the
individual passes or their activity is different. Two algorithm phases can be
distinguished according to the order of passing through document texts in both
compression algorithms:

– First phase - corresponds to the first pass of the compression algorithm. A
word-based alphabet is created in this phase. Individual tokens are extracted
from documents through the process of lexical analysis, which is implemented
by the front end part. This phase is shared with document indexing in the
textual database.

– Second phase - corresponds to the second pass of the compression algorithm.
A complete word-based alphabet is available upon the completion of the first
phase and the actual document compression can begin. A lexical analysis is
again performed and the token sequence that is being created is compressed
by a chosen algorithm. Both phases of the compression algorithm, the front
end and the back end, are already active in this phase.

The division of the compression algorithm into two relatively independent
parts made it possible to separate two different compression algorithm phases, i.e.
the creation of a word-based alphabet and the actual compression. Naturally, this
separation has simplified the algorithm design, it has made the implementation
more transparent, etc.

Scheme of WLZW and WBW decompression algorithms Figure 1(b)
shows a structure of the decompression algorithm of WLZW and WBW methods.
As the figure clearly shows, both decompression algorithms can be divided into
two parts - front end and back end, like the compression algorithms. WLZW and
WBW methods were constructed as asymmetric, from whence it follows that:

Improvement of Text Compression Parameters Using Cluster Analysis 119

Docs

Alphabet

Aux
data

Compressed
Docs

Front end

Back end

Compression algorithm

Tokens

Tokens

Tokens’
Idents

Lexical
Analyzer

Preprocessor

Token table

LZW
compressor

BW
compressor

Tokens
Idents

Tokens
Idents

BSTW
compressor

(a) Compressor

Decompression algorithm

Front end

Back end

Tokens
Idents

Tokens ID
numbers

Alphabet

Aux
data

Compressed
Docs

LZW
decompressor

BW
decompressor

BSTW
decompressor

Postprocessor

Token table

Tokens

Decompressed
document

DocID

IRS searching
algorithm

(b) Decompressor

Fig. 1. WLZW and WBW schemes

– Decompression is simpler than compression. All operations that can be per-
formed by the compression algorithm are transferred to this algorithm, so
that the decompression algorithm performs only the necessary operations.

– Decompression involves only one phase. The decompression of a document
requires only one pass through the compressed text. All objects contained in
scheme 1(b) are therefore active during decompression and the decompres-
sion progress has a ”through-flow” character.

The division of the decompression algorithm into two parts enabled the sep-
aration of the actual decompression and the subsequent reconstruction of the
document text from a sequence of token identifiers.

Furthermore, this division made it possible to see the compression and the
decompression algorithms as two dual algorithms with a similar internal struc-
ture.

4 Cluster analysis

Finding of groups of objects with the same or similar features within given set
of objects is the goal of cluster analysis [3]. These groups are called clusters. In
our case objects are equal to documents that will be stored in textual base, and
clusters are equal to groups of similar documents. First of all the distance of two
documents and distance matrix C for each pair of documents should be defined.
Our approach of cluster analysis is based on ultrametric tree [17].

4.1 Ultrametric

The triangular inequality holds for a metric space: d(x, z) ≤ d(x, y) + d(x, z) for
any triplet of points x, y, z. In addition the properties of symmetry and positive

120 Jǐŕı Dvorský, Jan Martinovič

definiteness are respected. The ultrametric inequality is: d(x, z) ≤ max{(d(x, y), d(x, z)}
for any triplet x, y, z [23].

Definition 1. A metric space (X, d) is called ultrametric if for all x, y, z ∈ X
we have d(x, z) ≤ max{d(x, y), d(y, z)} [4].

Definition 2. The ball on the ultrametric is BX(x, r) = {z ∈ X|d(x, z) ≤ r}
for a point x ∈ X and r ≥ 0.

An ultrametric tree is a rooted tree whose edges are weighted by a non-
negative number such that the lengths of all the root-to-leaf paths, measured by
summing the weights of the edges, are equal. A distance matrix C is ultrametric
if an ultrametric tree can be constructed from this matrix. Figure 2 shows an
example of an ultrametric matrix and an ultrametric tree constructed from this
matrix.

a b c d
a 0 2 4 6
b 2 0 4 6
c 4 4 0 6
d 6 6 6 0

(a) An ultra-
metric matrix
C

(b) An ultrametric tree
for C

Fig. 2. Ultrametric tree sample

As is well known, in clustering a bijection is defined between a rooted, binary,
ranked, indexed tree, called a dendrogram, and a set of ultrametric distances [23,
17].

4.2 Clustering

Definition of hierarchical aglomerative clustering method outgoing from [17]
which compute ultrametric tree from distance matrix C can described as:

1. Create distance matrix C.
2. At the beginning each object is considered as one cluster i.e. there are as

many clusters as objects. Sequentially, clusters are joined together and num-
ber of clusters drops down, when finally there is one cluster.

3. The most similar clusters p and q are found in distance matrix and their
distance is determined as proxs[p, q].

Improvement of Text Compression Parameters Using Cluster Analysis 121

4. Clusters p and q are joined together and the number of cluster is reduced.
New formed cluster is determined as t (it replaces row and column q), and
distance proxs[t, r] of new cluster t to all other clusters r are computed. For
Average method proxs[t, r] is defined as:

proxs[t, r] =
Npproxs[p, r] + Nqproxs[q, r]

Np + Nq

Then row and column p, corresponding to cluster p, is deleted form the
distance matrix C, i.e. size of distance matrix is reduced.

5. If there are more than one cluster, go to step 3

5 Compression with clustering support

Ordering of input documents was not taken in consideration in general descrip-
tion of word-base compression methods. The compression method works cor-
rectly for any ordering of documents. Probably the simplest ordering of input
documents is time ordering, i.e. the documents are compressed in the same or-
der as they are added to textual database. Seeing that compression methods
are based on searching of repeated parts of texts, it is easy to see, that this
ordering is not necessary the best possible. Improvement of compression per-
formance can be achieved by reordering of input documents. Better ordering of
input documents moves similar documents to one another.

Similar documents are grouped together using cluster analysis 4. Of course
cluster analysis is very time consuming so that it is counterproductive to perform
the analysis only to enhance compression performance. But when compression
method for IRS is developed, results of cluster analysis can be used in query
processing [8, 19] and vice versa, cluster analysis originally devoted to query
processing can be incorporated to compression.

To group similar documents together, agglomerative clustering algorithm de-
scribed in section 4 was used. But the question how to convert hierarchical tree
structure of clusters to linear list of documents still remains. The ultramnetric
tree was created during clustering. We can used this fact and for list of doc-
uments LX for compression used ultrametric ball query: BX(x, r), where r is
maximal distance in ultrametric tree. LX be sorted before compression aided
distance d(x, z) where z ∈ LX .

Two strategies were used to reorder collection of documents entering the
compression process:

Most Similar Left (MSL) – x in BX(x, r) is leftmost document in the ultra-
metric tree.

Most Similar Right (MSR) – x in BX(x, r) is rightmost document in the
ultrametric tree.

122 Jǐŕı Dvorský, Jan Martinovič

6 Experimental Results

Some experiments were done to test impact clustering on word-based compres-
sion methods. Both compression methods were used in our tests. Two large text
files were used for our tests: latimes.txt coming from TREC corpus [14], and
enron.txt, which consists of emails from Enron email corpus3. In file latimes.txt
individual documents are represented by each newspapers article and ordering is
determined by date of publication. Each individual email represents document in
file enron.txt, and ordering is defined as alphabetical ordering of users in Enron
corpus. Results for this type of ordering without ordering is provided in Table 1.

The following notation will be used to describe results of experiments:

– CS is the size of compressed file
– CSα, where α ∈ {WLZW,WBW,GZIP, BZIP2} is the size of compressed

file without clustering, see Table 1
– ∆CS = CSα−CS

CSα
× 100%

– CR = CS
S0

× 100% is compression ratio
– ∆CR = CRα − CR, where α ∈ {WLZW,WBW,GZIP, BZIP2}

∆ values represents difference between given value and corresponding value in
compression without clustering. Positive ∆ value means that given value is worse
than original value, negative value means than new value is better than original
one.

Table 1. Compression without clustering

latimes.txt enron.txt

Original size [bytes] S0 498,360,166 886,993,953

WLZW method
Compressed size [bytes] CSWLZW 158,017,940 207,908,560
Compression ratio [%] CRWLZW 31.708 23.440

WBW method
Compressed size [bytes] CSWBW 110,246,524 167,099,129
Compression ratio [%] CRWBW 22.122 18.839

Gzip
Compressed size [bytes] CSGZIP 175,864,812 228,953,895
Compression ratio [%] CRGZIP 35.289 25.812

BZip2
Compressed size [bytes] CSBZIP2 131,371,338 164,720,382
Compression ratio [%] CRBZIP2 26.361 18.571

The first experiments are focused on the file latimes.txt. This file is relatively
large. The size of documents (newspapers articles) varies from two to eight kilo-
bytes. Compression with clustering and five random permutations were tested.
3 Duplicate emails were deleted before processing.

Improvement of Text Compression Parameters Using Cluster Analysis 123

It is easy to see from Table 2, that clustering brings positive results in terms
of compression ratio. The size of the compressed text is about 4% less than the
original size in the WLZW methods, and about 5% smaller than the original one
in the WBW method. The compression ratio improves to cca 1.2% with respect
to original values in both cases.

Table 2. Impact of clustering on compression

WLZW method

Cluster strategy on file CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

MSL latimes.txt 151,869,588 -6,148,352 -3.891 30.474 -1.234
MSR latimes.txt 151,973,800 -6,044,140 -3.825 30.495 -1.213

MSL enron.txt 187,951,820 -19,956,740 -9.599 21.19 -2.25

WBW method

Cluster strategy on file CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

MSL latimes.txt 104,701,332 -5,545,192 -5.03 21.009 -1.113
MSR latimes.txt 104,706,446 -5,540,078 -5.025 21.01 -1.112

MSL enron.txt 132,707,295 -34,391,834 -20.582 14.961 -3.877

GZip method

Cluster strategy on file CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

MSL latimes.txt 164,298,043 -11,566,769 -6.577 32.968 -2.321
MSR latimes.txt 164,322,641 -11,542,171 -6.563 32.973 -2.316

MSL enron.txt 153,765,189 -75,188,706 -32.84 17.336 -8.477

Bzip2 method

Cluster strategy on file CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

MSL latimes.txt 120,149,683 -11,221,655 -8.542 24.109 -2.252
MSR latimes.txt 120,154,853 -11,216,485 -8.538 24.11 -2.251

MSL enron.txt 122,024,594 -42,695,788 -25.92 13.757 -4.814

Better results were achieved for file enron.txt, see Table 2. The improvement
of compression ratio is cca 2 % with respect to the original compressed size in
the WLZW method, and cca 4 % in the WBW method.

Random permutations deteriorate compression in all cases (see Tables 3,
and 4). These negative results mean that clustering has measurable impact on
compression performance, and the positive results of regarding cluster supported
compression are not coincidental.

The results of standard GZip and BZip2 compression utilities provide data
for comparison with our proposed word-based compression methods. As can be
seen from tables, character of these results is very close to our methods; therefore
clustering has serious impact on compression regardless of selected compression
method.

124 Jǐŕı Dvorský, Jan Martinovič

Table 3. File latimes.txt: random permutations

WLZW method

Permutation CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

1 160,417,812 2,399,872 1.519 32.189 0.481
2 160,456,620 2,438,680 1.543 32.197 0.489
3 160,448,056 2,430,116 1.538 32.195 0.487
4 160,456,564 2,438,624 1.543 32.197 0.489
5 160,475,324 2,457,384 1.555 32.201 0.493

Average 160,450,875 2,432,935 1.54 32.196 0.488

WBW method

Permutation CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

1 111,686,104 1,439,580 1.306 22.411 0.289
2 111,713,942 1,467,418 1.331 22.416 0.294
3 111,718,068 1,471,544 1.335 22.417 0.295
4 111,717,879 1,471,355 1.335 22.417 0.295
5 111,712,566 1,466,042 1.330 22.416 0.294

Average 111,709,712 1,463,188 1.327 22.415 0.293

GZip method

Permutation CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

1 182,350,555 6,485,743 3.688 36.590 1.301
2 182,612,870 6,748,058 3.837 36.643 1.354
3 182,626,115 6,761,303 3.845 36.645 1.357
4 182,616,966 6,752,154 3.839 36.644 1.355
5 182,616,986 6,752,174 3.839 36.644 1.355

Average 182,564,698 6,699,886 3.810 36.633 1.344

BZip2 method

Permutation CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

1 133,747,217 2,375,879 1.809 26.837 0.477
2 133,859,533 2,488,195 1.894 26.860 0.499
3 133,848,650 2,477,312 1.886 26.858 0.497
4 133,864,200 2,492,862 1.898 26.861 0.500
5 133,854,622 2,483,284 1.890 26.859 0.498

Average 133,834,844 2,463,506 1.875 26.855 0.494

Table 4. File enron.txt: random permutations, WLZW method

Permutation CS [bytes] CSα − CS [bytes] ∆CS [%] CR [%] ∆CR [%]

1 242,459,136 34,550,576 16.618 27.335 3.895
2 249,122,668 41,214,108 19.823 28.086 4.646
3 250,203,876 42,295,316 20.343 28.208 4.768
4 250,342,664 42,434,104 20.41 28.224 4.784
5 250,511,920 42,603,360 20.491 28.243 4.803

Average 248,528,052 40,619,492 19.537 28.019 4.579

Improvement of Text Compression Parameters Using Cluster Analysis 125

7 Conclusion and future works

Word-based compression methods combined with cluster analysis of input docu-
ment have been presented in this paper. These compression methods are suitable
especially for IRS. Experimental results prove that clustering has a positive im-
pact on the compression ratio.

Acknowledgement

This work is supported by Grant of Grant Agency of Czech Republic No. 201/05/P145.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

2. J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data
compression scheme. Communications of the ACM, 29(4):320–330, 1986.

3. M. W. Berry and M. Browne. Understanding Search Engines. SIAM Society for
Industrial and Applied Mathematics, Philadelphia, 1999.

4. N. Brodskiy, J. Dydak, J. Higes, and A. Mitra. Dimension zero at all scales. ArXiv
Mathematics e-prints, July 2006.

5. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on
compressed text allowing errors. In W. B. Croft, A. Moffat, C. J. van Rijsbergen,
R. Wilkinson, and J. Zobel, editors, Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 298–306. ACM Press, New York, 1998.

6. J. Dvorský. Word-based compression methods for text retrieval systems. In
WDS’98, Praha, 1998. ISBN 80-85863-29-4.

7. J. Dvorský. Word-based Compression Methods for Information Retrieval Systems.
Phd thesis, Charles University Prague, 2004.

8. J. Dvorský, J. Martinovic, and V. Snásel. Query expansion and evolution of topic
in information retrieval systems. In V. Snásel, J. Pokorný, and K. Richta, edi-
tors, DATESO, volume 98 of CEUR Workshop Proceedings, pages 117–127. CEUR-
WS.org, 2004.

9. J. Dvorský, J. Pokorný, and V. Snášel. Word-based compression methods with
empty words and nonwords for text retrieval systems. In Datasem’98, Brno, 1998.

10. J. Dvorský, J. Pokorný, and V. Snášel. Compression methods for large multilingual
text document. In Proceedings of 1999 International Symposium on Database, Web
and Cooperative Systems, pages 158–163, Baden-Baden, 1999.

11. J. Dvorský, J. Pokorný, and V. Snášel. Word-based compression methods and
indexing for text retrieval systems. In J. Eder, I. Rozman, and T. Welzer, editors,
Proceedings of ADBIS 99, number 1691 in Lecture Notes in Computer Science,
pages 75–84. Springer-Verlag, Berlin, 1999.

12. J. Dvorský and V. Snášel. Modifications in Burrows-Wheeler compression algo-
rithm. In Proceedings of ISM 2001, pages 29–35, Ostrava, 2001. ISBN 80-85988-
51-8.

126 Jǐŕı Dvorský, Jan Martinovič

13. J. Dvorský, V. Snášel, and J. Pokorný. Word-based compression methods for large
text documents. In Data Compression Conference - DCC ’99, page 523, Snowbird,
Utah, USA, 1999.

14. D. Harman, editor. The Forth REtrieval Conference (TREC-4). National Inst. of
Standards and Technology, Gaithersburg, USA, 1997.

15. R. L. Haskin. Special-purpose processors for text retrieval. Database Engineering,
4(1):16–29, 1981.

16. R. N. Horspool and G. V. Cormack. Constructing word-based text compression
algorithms. In J. A. Storer and M. Cohn, editors, Proc. 1992 IEEE Data Com-
pression Conference, pages 62–71. IEEE Computer Society Press, Los Alamitos,
California, Mar. 1992.

17. S. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–254, 1967.
18. J. Lansky and M. Zemlicka. Text compression: Syllables. In Richta et al. [24],

pages 32–45.
19. J. Martinovic and P. Gajdos. Vector model improvement by fca and topic evolution.

In Richta et al. [24], pages 46–57.
20. A. Moffat. Word-based text compression. Software-Practice and Experience,

19(2):185–198, 1989.
21. A. Moffat, R. M. Neal, and I. Witten. Arithmethic coding revisited. ACM Trans-

actions on Information Systems, 16(3):256–294, 1998.
22. A. Moffat, J. Zobel, and N. Sharman. Text compression for dynamic document

databases. Knowledge and Data Engineering, 9(2):302–313, 1997.
23. F. Murtagh. On ultrametricity, data coding, and computation. Journal of Classi-

fication, Volume 21, Number 2 / September:167–184, 2004.
24. K. Richta, V. Snásel, and J. Pokorný, editors. Proceedings of the Dateso 2005

Annual International Workshop on DAtabases, TExts, Specifications and Objects,
Desna, Czech Republic, April 13-15, 2005, volume 129 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2005.

25. B. Y. Ryabko. Technical correspondence: A locally adaptive data compression
scheme. Communications of the ACM, 30(9):792, 1987.

26. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Van Nostrand Reinhold, 1994.

27. J. Zobel and A. Moffat. Adding compression to a full-text retrieval system.
Software-Practice and Experience, 25(8):891–903, 1995.

Work with Knowledge on the Internet – Local
Search

Antońın Pavĺıček, Josef Muknšnábl

Department of System Analysis, Faculty of Informatics and Statistics,
University of Economics, Prague, W. Churchill sq. 4, 130 67, Prague, Czech Republic

{antonin.pavlicek, muknsj}@vse.cz

Work with knowledge on internet – local search

Antonín Pavlíček, Josef Muknšnábl1

1 both of Department of System Analysis, Faculty of Informatics and Statistics, University
of Economics, Prague, Czech Republic

{Antonin.Pavlicek, muknsj}@vse.cz

Abstract. Authors are looking within their research grant new original web
local search algorithm respecting specifics of Czech national environment. We
would like to initiate further debate on topic. We are addressing three subtasks
that include: identification of user geographical location, identification of web
locality and final algorithm design working with these information altogether.

1 Preamble

A staggering pace of internet growth together with steadily increasing broadband
penetration availability and general information literacy lead to more frequent internet
usage. Such trend is not visible only in US but worldwide too - number of internet
users and overall usage numbers constantly grow[1]. Although capabilities of engines
and catalogs have improved significantly within last several years (especially after
Google ranking algorithm arrival) they are still not perfect in terms of accuracy and
relevancy. Typical areas where there is a potential for improvement are e.g. personal-
ized and local search (in terms of geography and regions). Local search is a matter of
an internal research grant that has been launched these days at University of Econom-
ics, Prague by us. A focus on that topic is not rare, especially in global scale, as sev-
eral patents related to local search have already been filed[2] in US. Our main goal is
to design and implement new web local search algorithm that will respect Czech
national specifics and verify its function on local web page catalog Jihozapad.info.
We would like to indicate possible ways of solution by the article in hope that some
wider discussion bringing new ideas will be initiated.

2 Local Search and its possibilities

Web local search is a type of search when user is trying to find not only topic relevant
but also locally (in terms of geographical distance) relevant web page/pages. Typi-
cally the users are searching for local/regional pages related to local businesses, local
authorities or local events. Local search could be achieved by several ways. The most
common one is by specification of country/state/area/district/city/village name (or
other local information such as ZIP code) in query that is submitted to search site.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 127–131, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

128 Antońın Pavĺıček, Josef Muknšnábl

Other one is that the search site recognizes user's physical location and will offer
results relevant to recognized position only. The type of way is used depends on type
of search site used. All major players in search engines/web catalog branch on
global/Czech level offer local search tools. Let remind at least Google Maps, Yahoo!
Local, MSN Live Search, from local Czech search sites mapy.cz and centrum.cz.
As latest numbers indicate an interest in local searching (geo-searching) is not a fic-
tion or wish but a reality everyone has to count with. For example some recent poll,
provided by comScore (Global Internet Information Provider) says[6] that more than
109 million of people performed about 849 millions of local searches in July 2006
which also represents 43% year over year increase. Most of the users, about 41 %
were searching for items such as car rental office or dry cleaner [6]. A split by particu-
lar search engines / portals looks like this [6]: Google sites 29,5 %, Yahoo sites 29,2
%, Microsoft 12,3 %, Time Warner Network 7,1 %, Verizon Communications 6.6 %,
YellowPages.com 3.9 %, Ask Network 2.7 %, Local.com 1.9 %, InfoSpace Network
1.9 %, DexOnline.com 1.4 %, all other sites 3.2 percent.
Such trend is confirmed by other polls and studies and is generally accepted and con-
firmed within whole IT/marketing industry[7].

3 Our initial conditions

As already mentioned within preamble we’ve decided to go the way of establishing
new improved local search algorithm. That algorithm should be implemented in local
web catalog/directory called jihozapad.info and its results verified within set of jiho-
zapad.info registered www links.
Web catalog / directory jihozapad.info is primarily focused on area of South-West
Bohemia (part of The Czech Republic). It contains primarily www links related to
local subjects such as stores, companies, authorities etc. It geographically covers an
area about 17 617 km² with about 1 180 541 inhabitants (population density is 67
inhabitants / km²). The catalog was launched in August 2005 and its 12 month-
average unique visitor number is 1458 visitors per month. Catalog and its interface is
primarily available in Czech, other available language is German, as covered area
directly neighbor with Germany. Surprisingly most of visitors is from US (62 %)1
followed by The Czech Republic (16%). Number of German visitors is quite insig-
nificant (about 1%)!
There are 121 registered users and 1148 registered local web links. Locality is in
catalog presented by possibility to determine district within which searching should
be performed (there are actually four main districts called Klatovy [KT], Domažlice
[DO], Strakonice [ST] and Plzeň-jih [PJ]).2 A catalog has no true search engine at the
moment, all links are added and registered only by registered users (approved by
portal administrator)

1 Robots are excluded.
2 Information about district is available for all registered links. It is a mandatory attribute.

Work with Knowledge on the Internet – Local Search 129

4 Problem decomposition

4.1 Identification of user geographical location
is also called geo-location. Typically geo-location of users is derived from their IP
addresses (or MAC address). Such service is often available on commercial basis
(such as IP2Location, MaxMind etc.). However it will not be very likely our case due
to from our perspective high cost of such services. We’ll try to discuss that with local
providers and agree on some cooperation at this point. A level of details that we can
obtain from IP address will depend on quality of service/database it will be for such
purpose used. The easiest way task is to obtain name of the country (IP registrars
supply that information for free), the more difficult is to get some other details such
as region state, province/district, city, latitude/longitude etc. Other possible and used
way of determining locations of user is to use information that user provided us dur-
ing portal registration (such as address, ZIP code, phone numbers, GPS coordinates
etc.). The problem is that number of registered users will be very likely much smaller
than number of visitors, so its capabilities will be rather limited comparing the first
mentioned method. Very likely combined approach will be chosen.

4.2 Web page link and its relation to particular geographical area
There are many ways that can help us to determine web page locality. We’ve thought
about following, so far:
Use information provided by web page owners: there is information about district
for each registered link right now in Jihozapad.info. We do not consider this as fully
sufficient and there has been implemented an improvement leading to make location
of www links more precise these days. We still will come from information that will
be entered by user during link registration but this information will be more detail and
will be expressed in a standard way. As an appropriate standard we have chosen split
into geographical areas based on EU legal framework for the geographical division of
the territory of the European Union also know as NUTS [8]. There will be a possibility
to enter for one www link more geographical locations as one www link may repre-
sent a company with different stores within region (for example www.welstam.cz).
Following NUTS information will be gathered:

• NUTS1_uzemi: Česká republika (same for all registered link)
• NUTS1_kod: CZ01 (will be the same for all registered link)
• NUTS2_oblast: Jihozápad (will be the same for all registered link)
• NUTS2_kod: CZ03 (will be the same for all registered link)
• NUTS3_kraj: Jihočeský kraj / Plzeňský kraj
• NUTS3_kod: CZ031 / CZ032
• NUTS4_okres: Strakonice / Domažlice / Klatovy / Plzeň-jih
• NUTS4_kod: CZ0316/ CZ0321 / CZ0322 / CZ0324

Such information will be also enhanced by particular address in form: City/Town,
Street house number, ZIP code. Also information about latitude/ longitude and alti-
tude will be gathered include precise GPS coordination (WGS-84). We strongly hope
that all gathered information will help in providing better result on local search.

130 Antońın Pavĺıček, Josef Muknšnábl

Use local specialties from web page content: Such approach is applicable in the
case of automated geo-spatial search engine (which is apparently not the case of such
improvement because of time restrictions). The idea is to search particular web page
(include all subpages) for existence of unique local words such as addresses parts
(village/town/district/area names), dialect words, ZIP codes, dial codes and derive
web page locality from occurrence frequency of such words (or via other algorithm).
Situation in that might be complicated by fact that many addresses can be found on
webpage. However as Jihozapad.info is strictly oriented on region of South-West
Bohemia (districts Klatovy, Domažlice, Strakonice, Plzeň - Jih), found addresses
from other regions could be ignored. Similar algorithm to "Geographic Scope[3]"
developed by Kyoto researches could be applied or other algorithms coming of data-
mining techniques such as association analysis, clustering methods[4] etc.
Cooperation with local webhosting providers: identification and focus on local
webhosting servers where there can local content will be very likely stored. For ex-
ample local Webhosting provider ŠumavaNet contains lot of regionally oriented web
pages. Webhosters also could become partners in gathering locally oriented content,
via some unified interface for example.
Supporting and propagating standards helping in geo-location: jihozapad.info
should be prepared to extract web page locality from some HTML-GEO for-
mats/protocols such as Microformats hCard [5] (extension of item a) or cooperate in
exchange of geo-spatial data associated to GIS systems distributed in a set of prede-
fined formats. It would significantly improve catalog accuracy however because of
timing restrictions it will not be possible the case.
Although there are many ways by which we can determine web page locality, no one
of them guarantees for 100% the result. The reasons for that may vary. Many regional
web pages, even those locally oriented don’t contain any significant information
about their origin (they can be just topic oriented). Many of them are locality inde-
pendent and finally quality of locality information derived by using methods men-
tioned above doesn’t need to be sufficient for locality determination.

4.3 A final search algorithm structure
These days jihozapad.info offers its users „district“ level of detail in relation to regis-
tered web pages. This granularity is of course not sufficient for being real locally
oriented search site and improvements have already started to be implemented. Hav-
ing all information about users accessing jihozapad.info and locality of registered
web pages we can think about appropriate algorithm. At this moment we think of
some kind of Google style ranking algorithm with different weights for particular
levels of granularity (region/district/town/street) and specific metrics for deriving web
page importance in given area (pages with links from other pages same dis-
trict/region/town etc. would be considered as more relevant).

Work with Knowledge on the Internet – Local Search 131

5 Conclusion

To find a good algorithm for local searching is a complex task that combines methods
from many areas such as data mining, web pages constructions, search engine princi-
ples etc. We are tat the beginning right now, all methods mentioned in our article
would help us, finding and optimal balance that will provide the most relevant and
accurate result will be matter of real algorithm tuning on real data.

References

1. Market Research, Internet World Stats – Usage and Population Statistics [online]. [cit.
2006-12-20]. URL: <http://www.internetworldstats.com/stats.htm>.

2. SLAWSKI, William, Assigning Geographic Locations to Web Pages [online]. [cit. 2006-12-
28]. URL: <http://www.seobythesea.com/?p=386>

3. YAMADA, Naoharu – LEE, Ryong – KAMBAYASHI, Yahiko. Classification of Web
Pages with Geographic Scope and Level of Details for Mobile Cache Management, Pro-
ceedings of the Third International Conference on Web Information Systems Engineering
(Workshops) 0-7695-1754-3/02, 2002 IEEE, [online]. [cit. 2006-12-20]. URL:
<http://csdl.computer.org/dl/proceedings/wisew/2002/1813/00/18130022.pdf>

4. HAN, Jiawei – KAMBER, Micheline. Data Mining: Concepts and Techniques. San
Diego,(CA), USA: Academic Press, 2001, 550 s., ISBN 1-55860-489-8

5. hCard Description [online]. [cit. 2006-12-20]. URL: <http://microformats.org/wiki/hcard>.
6. comScore: Local Web Searching Soars [online]. [cit. 2006-10-02]. URL:

<http://www.mediaweek.com/mw/search/article_display.jsp?vnu_content_id=1003188359
&schema=>.

7. New Developments in Local Search, Part 4 [online]. [cit. 2003-11-19]. URL:
<http://www.clickz.com/showPage.html?page=clickz_print&id=3110641>.

8. Common classification of territorial units for statistical purposes [online]. [cit. 2006-02-06].
 URL: < http://europa.eu/scadplus/leg/en/lvb/g24218.htm>.

The Use of Ontologies in Wrapper Induction

Marek Nekvasil

Department of Information and Knowledge Engineering, University of Economics,
Winston Churchill Sq. 4, 130 67, Prague 3, Czech Republic

nekvasim@vse.cz

The use of ontologies in wrapper induction

Marek Nekvasil

Department of Information and Knowledge Engineering, University of Economics Prague,
Winston Churchill Sq. 4, 130 67, Prague 3, Czech Republic

nekvasim@vse.cz

Abstract. The purpose of this entry is to bring in an extension of ontologies so
that they can be utilized in the process of automated information extraction
from the web documents. Major part of it is dedicated to a proposition and
derivation of an inference model for evaluation of the pattern matches and their
combination. Further is proposed a simple naïve method of wrapper induction
which is able to use the results of the first part.

Keywords: ontology, automatic annotation, information extraction, wrapper

1 Introduction

One of the simplest alternatives to the manual handling of web documents is the use
of wrappers, sets of rules to identify the desired values in the document. These rules
can be created either by hand or automatically, in which case we are talking about
wrapper induction [3]. For automatic wrapper induction in principle some examples
of the real data to be extracted are needed along with their respective context, which
form basically an annotated document. The purpose of this entry is to propose a
concept by which it should be possible to annotate the documents automatically with
the use of ontologies. We will call any ontology that is designed to this use in
information extraction an extraction ontology.

2 Extending an OWL ontology

An ontology written in a bare OWL language has very limited capabilities of
describing the possible values of datatype properties (properties which’s value is
a literal) and therefore does not contain enough information to identify these inside
a document. To remove this insufficiency we introduce an extension which will
enable us to append a pattern of typical values to each datatype property.
Any general rule for which it is possible on any continuous part of a document (in
terms of a string of characters or words) to determine to what extent it is satisfied we
call a pattern. An example of a pattern can be a rule that evaluates whether a given
part of a document is a number from a given range or a string from a given list.
From now on we will distinguish between two kinds of patterns. Foremost there will
be simple patterns, or rather atomic patterns that will be formed by a simple rule,
which can be directly evaluated on a part of a document. An example of atomic
patterns can be the aforementioned patterns that match a number or a string.
Moreover there will be composite patterns, which we will define as such a
combination of rules that can be evaluated on a given continuous part of a document
as a whole. As such, the composite pattern will be always a combination of other

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 132–135, ISBN 80-7378-002-X.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2007.

The Use of Ontologies in Wrapper Induction 133

patterns, both atomic and composite. The composite patterns can be hierarchically
combined which can be of significant concern in some specific situations.
As it has sense to assign only one pattern per datatype property, more patterns will
have to be joined via including them in some composite pattern. Every part of a
document that matches a given pattern, i.e. the pattern rule evaluates positively on
that part, will be considered a suspected partial candidate for the occurrence of the
value of datatype property the pattern is assigned to. If that given pattern is the one
that is assigned directly to the datatype property, every matching part of the document
will be considered to be a suspected candidate for the occurrence of the value.

2.1 Atomic Patterns

While evaluating the match of atomic patterns we encounter the problem of deriving
the certainty degree of marking the candidate. We take a pattern as an algorithm that
can tell for every place in the document to what extent the rule is satisfied depending
on its parameters. Here we have two distinct terms, the degree of pattern match which
represents the certainty with which the pattern’s algorithm marked the given place in
the document, and the certainty degree of marking the partial candidate for the value
of a certain datatype property which represents the certainty that the given place in
the document really is the occurrence of the value, given sole by the observation of
the single pattern and independently of any other patterns. We will denote marking
the partial candidate as the pattern evidence and therefore the second term will be
equivalent to a degree of pattern evidence.
The degree of pattern match and the degree of pattern evidence should intuitively
correspond. If we denote the pattern match as A and the pattern evidence as E we can
write down this inference rule:

A → E (1)
We have chosen for our purposes a fuzzy logic inference model [2], but it should be
possible to use any other. In fuzzy logic we can define A and E as propositions

• A – “The pattern has marked the given place in the document.”
• E – “The marked place is really a pattern evidence”

and corresponding degrees as their truth values (i.e. degree of pattern match a=val(A)
and the degree of pattern evidence e=val(E)). We introduce also two universal
parameters for every pattern, namely precision and cover and we define them:

p = val (A → E) – pattern precision (2)
c = val (E → A) – pattern cover (3)

While using these parameters we can derive on Łukasiewicz fuzzy logic this form of
the inference rule (the detailed derivation is available in [6]):

((A & (A → E)) ∨ ¬(E → A)) ⇒ E (4)
If we take into account the prescriptions of p and c and do not overestimate the degree
of pattern evidence e, we get:

e = max (a + p -1, 1 – c) (5)
With the use of parameter p we can set a top limit to the degree of a given pattern
evidence. The pattern precision denotes in this context a certainty with what the high
degree of pattern match leads to a high degree of pattern evidence. The c parameter
sets the lowest possible value of the degree of pattern match.

134 Marek Nekvasil

2.2 Composite patterns

Would we like to combine the evidences of multiple patterns it will be a task in form
of a set operation. For this purpose just two set operations come on force, namely
union and intersection, which in combination with the complement operation can
form any other set operation possible. The determination of the degree of composite
pattern evidence itself is then a trivial matter. The degree of composite pattern match
will be determined by simply assembling the degrees of evidences of the partial
patterns with the appropriate logical operation, thus there will be conjoint patterns and
disjoint patters (and possibly negating patterns). From the pattern match defined in
this way we get the composite pattern evidence by the same way as we did in case of
atomic patterns.
It is interesting to discuss the meaning of precision and cover parameters of the partial
patterns in contrast with the use of the different kinds of composite patterns. In case
of a disjoint composite pattern the high value of p implies that the partial pattern is a
sufficient condition and in case of conjoint composite patterns the high value of c
means that the partial pattern forms a necessary condition.

2.3 Designing the patterns

We will denote the patterns in the extraction ontology as XML elements from a
special namespace nested in the elements of the datatype properties. The extent of the
patterns can vary from distinguishing time values, named entities to patterns that
evaluate the context or format of the document. A few basic patterns are proposed in
[6], however many others are possible. While designing a new pattern it is needed to
keep in mind the way it evaluates and think carefully the possibilities of its
combination of other existing patterns.

3 A simple wrapper induction method

By applying the rules of patterns on the content of a document we get a set of
evidences along with their certainty degrees for every datatype property in the
extraction ontology with a pattern assigned. If we rely on tabular structure of data we
can try to separate the evidences in a few segments according to the resemblance of
their XPath. We can purge the sets of evidences if we realize that the precision
attribute specifies the mean ratio of evidences that are marked correctly by the
pattern. Therefore up to 1-p of evidences supplied by this pattern can be false and
hence we can remove that much of the worst segments. If the data are stored in the
tabular structure the relevant parts of text are generally contained in the same
structure of elements that is not changing throughout the segment. On the level of
XPath expression this will show up as a single changing index in the absolute path by
omitting which we get a set of elements that would ideally all contain the value of the
respective property.
The cover parameter is the mean rate of the evidences that the pattern identifies to the
total real number of occurrences of the respective property. While the generalized
XPath expression should identify all possible occurrences of the property we can

The Use of Ontologies in Wrapper Induction 135

calculate the proportion of evidences of the pattern to this “complete” set and
difference from the parameter c represent the error caused by generalizing the paths.
Based on the number of evidences in segments and the respective absolute XPath we
can assign the corresponding segments of different properties and form the instances
of extracted class.
To sum up this approach is just a simple method and has many limitations. Besides
that this method can extract only properties with cardinality 1 (the tabular structure) it
is also limited in its tolerance to the irregularities in the structure of the document, on
the other hand to the irregularities in the extracted values it is rather resistant.

4 Conclusion and future work

The proposed method of pattern notation allows hierarchical combining of partial
patterns and is open to the possibility of designing additional patterns according to
one’s need. Similar approach is taken by [4] and [5], however unlike them we do not
design proprietary formats of ontologies but try to start from OWL standard.
The limitation of the proposed wrapper induction method is the fact that it relies on
the tabular structure of extracted data but the extraction is completely automatic and
with proper setting of the attributes allows the estimation of extraction error.
To propose a way of automatic learning of the patterns or at least of their parameters
could be an interesting subject of future work

Acknowledgement
The research leading to this paper was supported by the European Commission under
contract FP6-027026, Knowledge Space of semantic inference for automatic
annotation and retrieval of multimedia content, K-Space.

Reference

1. Anton T.: XPath-Wrapper Induction by generalizing tree traversal patterns, in:
Antoniou, G., van Harmelen, F.: A Semantic Web Primer, Cambridge MA.: MIT
Press, 2004, ISBN 0-262-01210-3

2. Hájek P.: Metamathematics of fuzzy logic, Dordrecht: Kluwer, 1998, ISBN: 0-
792-35238-6

3. Kushmerick, N.: Wrapper induction for information extraction, PhD thesis,
University of Washington, 1997

4. Labský M., Svátek V.: On the Design and Exploitation of Presentation Ontologies
for Information Extraction, ESWC'06 Workshop on Mastering the Gap: From
Information Extraction to Semantic Representation, Budva, Montenegro, 2006

5. Muslea, I., Minton, S., Knoblock, C.: A Hierarchical Approach to Wrapper
Induction, 3rd Conference on Autonomous Agents, 1999,
http://www.isi.edu/~muslea/papers.html

6. Nekvasil M., Využití ontologií při indukci wrapperů, diplomová práce, VŠE,
Praha 2006

Author Index

Dvorský, Jǐŕı, 115

Eckhardt, Alan, 103

Hoksza, David, 67

Chernik, Katsiaryna, 1

Kĺıma, Jan, 89
Kuthan, Tomáš, 21

Lánský, Jan, 1, 21
Loupal, Pavel, 11

Martinovič, Jan, 115
Muknšnábl, Josef, 127

Nečaský, Martin, 35
Nekvasil, Marek, 132
Novotný, Tomáš , 55

Pavĺıček, Antońın, 127

Skopal, Tomáš, 67, 89

Toth, David, 81

Vlčková, Zuzana, 1
Vraný, Jan, 47

Žák, Jan, 47

	Syllable-Based Burrows-Wheeler Transform
	Jan Lánský, Katsiaryna Chernik, Zuzana Vlcková
	Updating Typed XML Documents Using a Functional Data Model
	Pavel Loupal
	Genetic Algorithms in Syllable-Based Text Compression
	Tomáš Kuthan, Jan Lánský
	Using XSEM for Modeling XML Interfaces of Services in SOA
	Martin Necaský
	A Modular XQuery Implementation
	Jan Vraný, Jan Zák
	A Content-Oriented Data Model for Semistructured Data
	Tomáš Novotný
	Index-Based Approach to Similarity Search in Protein and Nucleotide Databases
	David Hoksza, Tomáš Skopal
	Using BMH Algorithm to Solve Subset of XPath Queries
	David Toth
	Shape Extraction Framework for Similarity Search in Image Databases
	Jan Klíma, Tomáš Skopal
	Inductive Models of User Preferences for Semantic Web
	Alan Eckhardt
	Improvement of Text Compression Parameters Using Cluster Analysis
	Jirí Dvorský, Jan Martinovic
	Work with Knowledge on the Internet -- Local Search
	Antonín Pavlícek, Josef Muknšnábl
	The Use of Ontologies in Wrapper Induction
	Marek Nekvasil

