
Charles University in Prague, MFF, Department of Software Engineering
Czech Technical University in Prague, FEE, Department of Computer Science

VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2010 Workshop

http://www.cs.vsb.cz/dateso/2010/
http://www.ceur-ws.org/Vol-567/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

Sponsored by

http://www.mirlabs.org/ http://www.cski.cz/

April 21 – 23, 2010
Štědrońın - Plazy

http://www.cs.vsb.cz/dateso/2010/
http://www.ceur-ws.org/Vol-567/
http://www.mirlabs.org/
http://www.cski.cz/

DATESO 2010
c© J. Pokorný, V. Snášel, K. Richta, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Page count: 198

Publication: 310th

Impression: 150
Edition: 1st

First published: 2010

This proceedings was typeset by PDFLATEX.
Cover design by Pavel Moravec (pavel.moravec@vsb.cz) and Tomáš Skopal.
Printed and bound in Ostrava, Czech Republic by TiskServis Jǐŕı Pustina.

Published by MATFYZPRESS publishing house of Faculty of Mathematics and Physics

Charles University in Prague, Sokolovská 83, 186 75 Praha 8, Czech Republic

as its 310th publication.

Preface

DATESO 2010, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 21 – 23, 2010 in in pension Fousek, Štědrońın - Plazy.

The 10th jubilee year was organized by Department of Software Engineer-
ing MFF UK Praha, Department of Computer Science and Engineering FEL
ČVUT Praha, Department of Computer Science VŠB-Technical University
Ostrava, and the Working group on Computer Science and Society of Czech
Society for Cybernetics and Informatics. The DATESO workshops aim for
strengthening connections between these various areas of Computer science.
The proceedings of DATESO 2010 are also available at DATESO Web site:
http://www.cs.vsb.cz/dateso/2010/ and CEUR Workshop Proceeding site:
http://www.ceur-ws.org/Vol-567/ (ISSN 1613-0073). The Program Com-
mittee selected 15 papers (11 full papers and 4 posters) from 26 submissions,
based on two independent reviews.

The workshop program also included 3 invited lectures: Database Trends
and Directions: Current Challenges and Opportunities by George Feuerlicht,
Content-based Retrieval of Compressed Images by Gerald Schaefer, and Chosen
Problems of Designing Effective Multiple Classifier Systems by Michal Wozniak.

We wish to express our sincere thanks to all the authors who submitted
papers, the members of the Program Committee, who reviewed them on the
basis of originality, technical quality, and presentation. We are also thankful to
the Organizing Committee for preparation of workshop and its proceedings as
well as the Czech Society for Cybernetics and Informatics and MIR Labs for
their support of publishing this issue.

Special thanks go to P. Moravec who, as copy editor of DATESO Proceedings,
prepared this volume.

April, 2010 J. Pokorný, V. Snášel, K. Richta (Eds.)

http://www.cs.vsb.cz/dateso/2010/
http://www.ceur-ws.org/Vol-567/

Steering Committee

Jaroslav Pokorný (chair) Charles University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Karel Richta Czech Technical University, Prague

Program Committee

Jaroslav Pokorný (chair) Charles University, Prague
Karel Richta Czech Technical University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague
Dušan Húsek Inst. of Computer Science, Academy of Sciences, Prague
Michal Krátký VŠB-Technical University of Ostrava, Ostrava
Tomáš Skopal Charles University, Prague
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Irena Mlynková Charles University, Prague
Michal Valenta Czech Technical University, Prague
Pavel Loupal Czech Technical University, Prague
Martin Nečaský Charles University, Prague
Jǐŕı Dvorský VŠB-Technical University of Ostrava, Ostrava
Radim Bača VŠB-Technical University of Ostrava, Ostrava
Petr Gajdoš VŠB-Technical University of Ostrava, Ostrava

Organizing Committee

Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Martin Nečaský Charles University, Prague
Jakub Lokoč Charles University, Prague
Jakub Kĺımek Charles University, Prague

Table of Contents

Full Papers

Parametrised Hausdorff Distance as a Non-Metric Similarity Model for
Tandem Mass Spectrometry . 1
Jiř́ı Novák, David Hoksza

Two-step Modified SOM for Parallel Calculation . 13
Petr Gajdoš, Pavel Moravec

Answering Metric Skyline Queries by PM-tree . 22
Tomáš Skopal, Jakub Lokoč

A Framework for Efficient Design, Maintaining, and Evolution of a
System of XML Applications . 38
Martin Nečaský, Irena Mlýnková

Reconstructing Social Networks from Emails . 50
Marcel Kvassay, Michal Laclav́ık, Štefan Dlugolinský

Efficient Implementation of XPath Processor on Multi-Core CPUs 60
Martin Krulǐs, Jakub Yaghob

Fast Fibonacci Encoding Algorithm . 72
Jiř́ı Walder, Michal Krátký, Jan Platoš

iXUPT: Indexing XML Using Path Templates . 84
Tomáš Bartoš, Ján Kasarda

Reverse-engineering of XML Schemas: A Survey . 96
Jakub Kĺımek, Martin Nečaský

Evolving Quasigroups by Genetic Algorithms . 108
Václav Snášel, Jiř́ı Dvorský, Elǐska Ochodková, Pavel Krömer, Jan
Platoš, Ajith Abraham

Using Spectral Clustering for Finding Students’ Patterns of Behavior
in Social Networks . 118
Gamila Obadi, Pavla Dráždilová, Jan Martinovič, Kateřina Slaninová,
Václav Snášel

Posters

Deferred node-copying scheme for XQuery processors 131
Jan Kurš, Jan Vraný

Denotational Semantics of the XML-λ Query Language 139
Pavel Loupal, Karel Richta

Modeling and Verification of Priority Assignment in Real-Time
Databases Using Uppaal . 147
Martin Kot

Testing Quasigroup Identities using Product of Sequence 155
Elǐska Ochodková, Jiř́ı Dvorský, Václav Snášel, Ajith Abraham

Invited Papers

Database Trends and Directions: Current Challenges and Opportunities . . 163
George Feuerlicht

Content-based retrieval of compressed images . 175
Gerald Schaefer

Chosen Problems of Designing Effective Multiple Classifier Systems 186
Michal Wozniak

Author Index . 187

Parametrised Hausdorff Distance as a
Non-Metric Similarity Model for Tandem Mass

Spectrometry?

Jǐŕı Novák and David Hoksza

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague,

Malostranské nám. 25, 118 00, Prague 1, Czech Republic
{novak, hoksza}@ksi.mff.cuni.cz

Parametrised Hausdorff Distance as
a Non-Metric Similarity Model for Tandem

Mass Spectrometry?

Jǐŕı Novák and David Hoksza

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague,

Malostranské nám. 25, 118 00, Prague 1, Czech Republic
{novak, hoksza}@ksi.mff.cuni.cz

Abstract. Tandem mass spectrometry is a widely used method for pro-
tein and peptide sequences identification. Since the mass spectra contain
up to 80% of noise and many other inaccuracies, there still exists a need
for more accurate algorithms for mass spectra interpretation.
The sizes of protein databases grow rapidly and the methods for indexing
these databases in order to interpret mass spectra become very popular.
The parametrised Hausdorff distance, suitable for non-metric search, is
presented in this paper. It models the similarity among tandem mass
spectra very well and it is able to match the spectrum to correct peptide
sequence in many cases without any post-processing scoring system.

Keywords: tandem mass spectrometry, metric access methods, peptide identifica-

tion, bioinformatics

1 Introduction

Tandem mass spectrometry [8] is a fast and popular method for determining
protein sequences from an experimentally prepared protein sample. Protein se-
quences identified by mass spectrometry are used in many fields of biological
research especially in methods for protein structure and function prediction [18].

Definition 1. Protein sequence is a linear sequence (of amino acids) over al-
phabet α of 20 letters, where α contains all letters from English alphabet except
{B, J, O, U, X, Z}1.

Mass spectrometry does not determine sequences directly but the collection
of data to be interpreted is obtained from tandem mass spectrometer. Each
protein molecule in the sample is digested into peptides (short pieces of proteins)

? This research has been supported in part by Czech Science Foundation (GAČR)
project Nr. 201/09/0683 and by institutional research plan number MSM0021620838.

1 The omitted letters may sometimes represent more than one amino acid if there is
no chance to differentiate them.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 1–12, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

2 Jǐŕı Novák, David Hoksza

by an enzyme before mass analysis. The most common and cheap enzyme is
trypsin and it digests protein after each2 amino acid K (lysine) and R (arginine)
if they are not followed by P (proline) [17].

Each peptide gets a charge z in a mass spectrometer and it becomes peptide
ion3. Peptide ions are separated by their ratio mass m (also called precursor
mass) and charge z, and then they are splitted to many peptide fragment ions.
The dataset obtained from the tandem mass spectrometer is a list of mass spectra
(one spectrum for each detected peptide ion). Precursor mass and charge can
be provided as an additional information for each spectrum corresponding to
a peptide ion. The process of assigning a corresponding peptide sequence to
an experimental spectrum is denoted as mass spectrum interpretation.

Definition 2. Mass spectrum is represented by a list of peaks. Each peak corre-
sponds to a peptide fragment ion and it is a pair of numbers m/z and intensity
of occurrence, where m denotes mass in Daltons4 and z charge.

An experimentally obtained mass spectrum (acquired by division of peptide
ions in mass spectrometer) usually contains many noise peaks (up to 80%), which
correspond to ions with very complicated and upredictable chemical structure.
The intensity may help to differentiate between more and less significant peaks
in such spectrum. Spectra generated from database of protein sequences (see
section 2) can be denoted as a hypothetical or theoretical. The intensity cannot
be determined from sequences for peaks in a hypothetical spectrum. The hypo-
thetical spectra do not contain intensity which usually does not cause a problem,
since the m/z ratio provides the main information for mass spectra interpreta-
tion.

Fig. 1. Mass spectrum of sequence PEPTIDE.

2 The digestion process is not perfect in practice so there can be some missed cleavage
sites.

3 Neutral molecules are not captured by mass spectrometer.
4 Dalton (Da) is a unit of atom relative mass.

Parametrised Hausdorff Distance as a Non-Metric Similarity Model . . . 3

There are several types of fragment ions in a mass spectrum, which are
fundamental for correct peptide sequence identification. The most frequently
occurring are y-ions and b-ions5 (Fig. 1). A ion serie is created by each type
of ions. The completeness of y-ions or b-ions series determines the quality of
the interpretation because the difference between two neighboring peaks in one
serie corresponds to the mass of an amino acid. For example, missing of y3 and
b4 in Fig. 1 causes loosing the information on the order of the letters T and I.
The letters can be determined from the difference of m/z between y2 and y4 (or
b3 and b5), but more candidate pairs of amino acids having similar aggregate
m/z value can be selected from 202 possible amino acids pairs.

Modifications of amino acids are also a common problem when mass spectra
are interpreted because other chemical groups can be attached to the amino acids
in proteins. This usually happens during sample preparation for the mass ana-
lysis or in the mass spectrometer. The most common modifications are e.g. car-
bamidation of cysteine C (+57.01 Da) or oxidation of methionine M (+16 Da)6.
The database UNIMOD [26] gathers discovered protein modifications for mass
spectrometry. At the time of writing this paper, there were more than 620 known
modifications.

2 State of the Art

Tandem mass spectra interpretation employs two basic approaches. Ab initio,
the first approach, is based on direct mass spectra interpretation using graph
algorithms and it is usually called as De Novo peptide sequencing [4]. This
approach is highly influenced by occurrence of complete ion series because missed
y-ions or b-ions can cause that there are many paths in graph and it is difficult
to assign correct peptide sequence to the spectrum. The quality of identification
using this approach is about 30% [9].

The other approach is based on search in the database [21] of already known
or predicted7 protein sequences. The hypothetical spectra of peptides are gen-
erated from database of protein sequences and compared with an experimental
spectrum. A combined approach, Sequence Tag, was presented in [14]. First, a
short amino acid sequence (tag) is determined by hand or by graph algorithm
and then a database is searched. The most common tools for peptide identi-
fication based on searching in databases are SEQUEST [23], MASCOT [12],
ProteinProspector [19], OMSSA [6], etc.

The number of data in protein databases grows exponentially every year [7]
and sequential scan of the whole database becomes too slow. Modeling an index
is not a trivial problem due to the noise, modifications and inaccuracies in mass
spectra.
5 Ion types are defined by the positions where splitting occurs.
6 Special types of modifications are posttranslation modifications (PTM), which arise

additionally after translation of DNA to proteins.
7 It is possible to use raw translation of DNA sequences to protein sequences, so

unknown protein sequences can be determined.

4 Jǐŕı Novák, David Hoksza

The naive method is based on indexing and querying mass spectra by their
precursor mass using B-tree [2]. But there can be complications if the experi-
mental spectrum contains modifications because m/z values of peaks and also
precursor mass are shifted. The lengths of peptide sequences are usually about
a few tens of amino acids. Looking for peptides with modifications can cause se-
lection of many peptides from the database because a wide interval for precursor
mass tolerance must be set up.

Several more sophisticated approaches were presented. One of them uses a
suffix tree [25] for preprocessing the protein sequence database and a graph al-
gorithm is used to preprocess tandem mass spectrum [11]. Then the suffix tree
is searched against spectrum graph for candidate peptides. The correct pep-
tide sequence is determined by a scoring function (such as HMM [27], dynamic
programming [9], SEQUEST-like scoring [23], etc.).

Another method is based on using a self-organizing map (SOM) which is
a type of neural network [15]. The hypothetical spectra are converted to high-
dimensional vectors (Ex. 1) and then SOM is trained. The experimental spec-
trum is then used for a range query on SOM and the peptide candidate set is
obtained and a scoring function is applied.

Example 1. Let the range of m/z values in the mass spectrum be 0-2,000 Da
and let it be divided in subintervals of 0.1 Da. Each mass spectrum is then
represented by a 20,000 dimensional boolean feature vector having ones at places
corresponding to intervals for which m/z value in the spectrum exists.

There are also database approaches based on the properties of metric space [28].
One of them uses locality sensitive hashing in Euclidean space to preprocess pep-
tides in the database followed by range query [5]. Another method is based on
using cosine similarity and MVP-tree [20]. Using variants of cosine similarity
(1) and representation of mass spectra as a high-dimensional vector (Ex. 1) is
common idea in mass spectrometry literature [1].

Cosine of an angle is not a metric (see section 4) but it can be turned into
metric by using arccos function. The approach based on MVP-tree [20] uses two
alternatives of cosine distance. The first is called fuzzy cosine distance and it is
generalization of (1). The other is called tandem cosine distance and it is com-
bination of the fuzzy cosine distance and the precursor mass filter. Comparison
of our method with this approach is presented in section 5.3.

cos(x,y) =
xy

‖x‖ ‖y‖ (1)

3 Original Idea and Improvements

3.1 Original Idea

The Hausdorff distance dH (2) and logarithmic distance dL (3) were proposed
in [16] for tandem mass spectra interpretation. These distances describe the sim-
ilarity among tandem mass spectra better than e.g. Euclidean dE or maximum
distance.

Parametrised Hausdorff Distance as a Non-Metric Similarity Model . . . 5

The advantage of using Hausdorff distance is that components on different
positions in two vectors can be compared. The main idea of using logarithmic
distance is that two vectors x and y are closer considering peptide identification
if there are great differences in a small number of their components than if there
are small differences in a large number of their components (Ex. 2).

dH(x,y) = max(h(x,y), h(y,x)), h(x,y) = max
xi∈x

{
min
yj∈y
{dE(xi, yj)}

}
(2)

dL (x,y) =
k∑

i=1

log |xi − yi|, |xi − yi| > 1

0, otherwise
(3)

Example 2. Lets assume vectors of m/z values x = {148, 263, 376, 477, 574,
703}, y1 = {148, 263, 476, 477, 574, 703} and y2 = {140, 270, 370, 477, 570,
710}. The Euclidean distance between vectors x and y1 is dE(x,y1) = 100 and
the distance between vectors x and y2 is dE(x,y2) .= 14.6 but the vectors x
and y1 are closer considering peptide identification. The missing number 376
in y1 means that corresponding peak in the mass spectrum is missing. On the
other hand the superfluous number 476 in y1 refers to the occurrence of similar
477. The replacement of values 376 and 476 can be observed as a consequence
of these inaccuracies.

The vectors of m/z values were splitted by a sliding window to many shorter
vectors of constant size in order to increase quality of identification. For example
a sorted vector of 12 m/z values can be generated for sequence PEPTIDE, these
numbers correspond to y and b-ions (Fig. 1). The (l − 1) ∗ 2 − dim + 1 = 10
vectors must be indexed for one peptide sequence of length l = 7 and for vectors
of dimension dim = 3. The short vectors were indexed by M-tree. The number
of correctly assigned peptide sequences to the mass spectra was about 50-60%
by using Hausdorff or logarithmic distance.

3.2 Improvements

Functions such as nth root or logarithm [16] are suitable for the purpose of mo-
deling similarity between mass spectra because these can significantly decrease
an error caused by outliers.

The proposed parametrised Hausdorff distance dHP (5) combine the charac-
teristics of the nth root function and Hausdorff distance, x and y are vectors of
m/z values, dE is Euclidean distance, n is index of the root and m is power mo-
difier. The Hausdorff distance allows comparison of vectors with different sizes,
which is valuable for peptide sequence identification because the mass spectra
(hypothetical or experimentally obtained) have different number of peaks.

6 Jǐŕı Novák, David Hoksza

h(x,y) =

∑
xi∈x

n

√(
minyj∈y {dE(xi, yj)}

)

|x| (4)

dHP (x,y) = (max(h(x,y), h(y,x)))m (5)

Using dHP noticeably increases accuracy even if no pre-processing nor post-
processing algorithms are employed. Typical pre-processing algorithm is a heuris-
tic which selects the most suitable peaks for peptide sequence identification from
an experimental spectrum. The post-processing algorithm is usually represented
by a scoring function which selects the best peptide sequence corresponding to
an experimental spectrum from the peptide sequence candidate set obtained by
an index structure.

Another improvement is significant reduction of the number of vectors that
are generated from protein sequences. Only one vector of m/z values is necessary
for peptide sequence representation which makes this method more usable. This
was not possible in the previous version of the algorithm, since dH and dL

required splitting in order to achieve sufficient quality of identification.
The time complexity for dHP computation isO(n2) but since the lists of peaks

are implicitly sorted by m/z ratio so an improvement is used and complexity
O(n) is achieved. The asymmetric part (see Alg. 1) of the Hausdorff distance
can be computed using two nested loops. The inner loop can be broken if the
minimum difference between components in two vectors is found. The position of
minimum is stored and it is used as starting value for inner cycle in the next outer
cycle (Alg. 1, line 3), errTol is mass error tolerance, root(x,n) is n

√
x, power(x,m)

is xm and abs computes the difference between two m/z values (in the Euclidean
distance dE).

Alg. 1. Parametrised Hausdorff Distance

1 float ComputeAsymmetric(sortedVector X,sortedVector Y,float errTol,float n) {
2 float sum = 0; int mem j = 0;
3 for(int i=0;i<X.size();i++) {
4 /* position of component with minimum difference in the inner cycle
5 is >= than position in previous inner cycle */
6 min = abs(X[i]-Y[mem_j]);
7 for(int j=mem_j+1;j<Y.size();j++) {
8 if (abs(X[i]-Y[j]) < min) {
9 min = abs(X[i]-Y[j]);

10 mem j = j;
11 }
12 /* minimum difference is achieved and better result cannot be found */
13 else break;
14 }
15 sum += (min>errTol)?root(min-errTol,n):0;
16 }
17 return sum/X.size();
18 }
19

20 float Compute(sortedVector X,sortedVector Y,float errTol,float n,float m) {
21 float left = computeAsymmetric(X,Y,errTol,n);
22 float right = computeAsymmetric(Y,X,errTol,n);
23 if (left > right) return power(left,m);
24 return power(right,m);
25 }

Parametrised Hausdorff Distance as a Non-Metric Similarity Model . . . 7

4 Metric Access Methods (MAMs)

The metric is a function that satisfies reflexivity, symmetry, non-negativity and
triangle inequality [28]. Function which partially corrupts the triangle inequality
is called a semimetric and the search process is denoted as non-metric [24].
The MAMs [28] were designed for fast search in databases modeled in metric
spaces. The triangle inequality is crucial for organizing objects into metric regions
and for pruning those regions while searching. MAM used in our experiments is
a metric tree (M-tree) [3] but it can be replaced with any other MAM. MAMs
support using range and k-NN (k-nearest neighbor) queries.

5 Experiments

The dataset from Keller et al. [10] was used in our experiments. The spec-
tra were obtained by mixing 18 proteins together.8 These spectra were iden-
tified by SEQUEST [23] and the results were manually checked. The spectra
with charge 1+ and 2+, digested by trypsin and with corresponding peptide
sequences contained in attached protein sequences file were selected. This file
was used as a database Keller1 containing 103 protein sequences (7,391 pep-
tide sequences). The database Keller2 is an extension of Keller1 where protein
sequences from MSDB (Mass Spectrometry Protein Sequence Database) [13]
were added. The Keller2 contains 10,000 protein sequences (649,481 peptide
sequences). The databases and the query set from [20] were also used for com-
parison with cosine similarity (see section 5.3).

Following qualities were measured. The quality of identification is a ratio
of correctly assigned peptide sequences to the mass spectra to all spectra from
the query set (without differentiating the position of the correct peptide sequence
in the obtained set). The distance computations ratio is the average number of
runs of Alg. 1 per one mass spectrum to the sequential access. Since the real
time is directly proportional to the distance computations ratio, we mostly use
the ratio in the following text. The triangle inequality ratio is an empirically
determined number of triplets of vectors satisfying the triangle inequality. The
distance distribution histogram (DDH) [24] shows distribution of distances be-
tween any two vectors in the database. The distances on the x axis are normalised
in order to be able to compare histograms with different values of n or m (e.g.
Fig. 2b). The normalisation is possible because maximum mass of generated pep-
tides is limited. The distance frequency is the number of pairs of vectors in the
distance d± δ in the database, where δ is an error caused by rounding.

All experiments were carried out on a 1.6 GHz processor AMD TURION
TL52 with 2 GB RAM and OS Windows XP SP2. Following settings were used
unless otherwise specified - digestion enzyme: trypsin, maximum missed cleavage
sites: 1, mass error tolerance: 0.4 Da, y and b-ions were generated in hypothet-
ical spectra, 100 peaks with highest intensity were selected from experimental
spectra, mass range of generated peptides: 500-5,000 Da.
8 The 119 spectra from the first run on mixture A were used.

8 Jǐŕı Novák, David Hoksza

5.1 Index of the Root

First experiments concerned the influence of the index of nth root function
(n = {1, 2, 5, 10, 20, 50, 100}) on the quality of peptide sequence identifi-
cation and the suitability of the parametrised Hausdorff distance for use with
MAMs. Settings: m = 1 (modifier is off), DDHs measured on Keller1, quality of
identification measured on Keller2 (sequential access was employed for Keller2).

0

20

40

60

80

100

1 2 5 10 20 50 100

Q
u
a
li
ty
o
f
id
en
ti
fi
ca
ti
o
n
[%
]

Index of the root (n)

1-NN
2-NN
5-NN

100-NN

0

5

10

15

20

0 25 50 75 100

D
is
ta
n
ce
fr
eq
u
en
cy
[%
]

Distance [%]

root = 1
2

5
10

20
50

100

Fig. 2. Index of the root - a) quality of identification, b) DDHs.

The quality of identification increases with increasing n and the distance
models the similarity among tandem mass spectra very well. The correct pep-
tide sequences were assigned to more than 80% of experimentally obtained mass
spectra as a result of 1-NN query for n = 50 (Fig. 2a). The number of cor-
rectly assigned sequences was about 90% for 5-NN query and more than 96%
for 100-NN query. We need a 669-NN query for achieving 100% quality of iden-
tification. The selectivity is about 0.1% in such a case. The average time for
the identification of one mass spectrum was about 14.4 seconds.

The triangle inequality ratio is about 17% for n = 1 and about 99% for
n = 2 and higher. A disadvantage is that intrinsic dimensionality [24] gets higher
with increasing n hence the distance computations ratio increases. For high
n, the difference between MAMs and sequential access blends. The intrinsic
dimensionality is indicated by DDH (Fig. 2b).

5.2 The Power Modifier

We tried to solve the problem of high intrinsic dimensionality by using power
modifier m (5) due to poor MAMs usability. The power is monotonous function
and it does not change the order of the results. The index performance (Fig. 4)
was tested on M-tree with database Keller2.

The DDH improves with increasing modifier (Fig. 3a). Modifiers were tested
for n = 50 (see Table 1). The DDH with m = 1 (modifier is off) is shown
for comparison. The triangle inequality ratio gets worse with increasing power
modifier (Fig. 3b). The experiments were executed for different n (see section
5.1). The quality of identification gets better with increasing triangle inequality
ratio (Fig. 4a) but the distance computations ratio gets worse (Fig. 4b).

Parametrised Hausdorff Distance as a Non-Metric Similarity Model . . . 9

0

2

4

6

8

10

12

0 25 50 75 100

D
is
ta
n
ce
fr
eq
u
en
cy
[%
]

Distance [%]

m = 9
8.6

8
7.2

6
4.6

1

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

T
ri
a
n
g
le
in
eq
u
a
li
ty
ra
ti
o
[%
]

Power modifier [-]

root = 2
5

10
20

50
100

Fig. 3. The power modifier - a) corrections of DDH, b) triangle inequality ratio.

80

85

90

95

100

90 92 94 96 98 100

Q
u
a
li
ty
o
f
id
en
ti
fi
ca
ti
o
n
[%
]

Triangle inequality ratio [%]

root = 20
50
100

20

30

40

50

60

70

80

90

100

90 92 94 96 98 100

D
is
t.
co
m
p
u
ta
ti
o
n
s
ra
ti
o
[%
]

Triangle inequality ratio [%]

root = 20
50
100

Fig. 4. The power modifier - a) quality of identification, b) dist. computations ratio.

Triangle inequality ratio [%] 90 92 94 96 98 100

n = 20 6.6 6.4 6 5.6 5.2 4

n = 50 9 8.6 8 7.2 6 4.6

n = 100 10 9.2 8.6 7.6 6.2 4.8

Table 1. Empirically determined modifiers m.

5.3 Comparison with the Cosine Similarity

Parametrised Hausdorff distance was compared with fuzzy cosine distance and
tandem cosine distance described in [20]. Datasets described in Table 1 in the
cited paper were used for the comparison. The database I contains 92,768 hypo-
thetical spectra from the genome of Escherichia Coli K12 and 7 proteins mixture
from Sashimi proteomics repository [22]. The database II has 654,276 spectra
and it is an extension of database I containing hypothetical spectra from human
genome. The query set contains 49 experimentally obtained spectra and comes
from the 7 proteins mixture from Sashimi proteomics repository. The following
settings were used: n = 1000, m = 4, 0 missed cleavage sites, error 1.0 Da, y and
b ions were generated in hypothetical spectra, 100 peaks with highest intensity
were selected from experimental spectra, peptide mass range 0-5,000 Da. We
used 13-NN query on M-tree and the triangle inequality ratio was 99.9%.

10 Jǐŕı Novák, David Hoksza

30

40

50

60

70

80

90

100

1 2 4 6 8 10 12 14 16 18 20

Q
u
a
li
ty
o
f
id
en
ti
fi
ca
ti
o
n
[%
]

k-NN

Parametrised Hausdorff dist.
Tandem cosine dist.

30

40

50

60

70

80

90

100

1 2 4 6 8 10 12 14 16 18 20

Q
u
a
li
ty
o
f
id
en
ti
fi
ca
ti
o
n
[%
]

k-NN

Parametrised Hausdorff dist.
Tandem cosine dist.

Fig. 5. Quality of identification - a) database I, b) database II.

The parametrised Hausdorff distance returns peptide sequence corresponding
to the experimental spectrum as a result of 1-NN query in 98% on database I
and in 95.9% on database II. The quality of identification eliminates the need of
a scoring system (see section 2). But in fact the quality decreases with increasing
database size and the scoring system cannot be completely removed from a real-
world application.

The parametrised Hausdorff distance has better quality of identification than
tandem cosine distance (Fig. 5)9. But in fact the tandem cosine distance has
the distance computations ratio less than 0.3% for both databases and parame-
trised Hausdorff distance has the computations ratio 62.3% for the database I
and 50.7% for the database II. Although the computations ratio of our method
decreases with increasing database size, it is still slower than the tandem cosine
distance. Fuzzy cosine distance has the distance computations ratio about 95%.
Tandem cosine distance’s computation ratio is a consequence of combination
fuzzy cosine distance and precursor mass filter [20]. The precursor mass filter
can be restrictive criterion if the peptide modifications are searched. Typical
precursor mass tolerance is about ±2 Da. This tolerance must be extended for
searching peptides with modifications. Precursor mass of modified peptides can
differ by more than a few tens to hundreds Daltons.

5.4 Non-Metric Search and k-NN Queries

An interesting characteristic can be observed when non-metric search is used.
We examined the performance of the M-tree (Keller2) using n = 50 and m = 9
which corresponds to 90% triangle inequality ratio. The k in k-NN query was
increased and the quality of identification grew. The results were not distributed
uniformly over the interval of k items but the correct peptide sequences were
found as the top hits in many cases (Fig. 6a). This is a consequence of non-
metricity and it cannot happen if the distance is metric or if the sequential access
is used. The distance computations ratio and average time of identification per
one spectrum grew with increasing k in k-NN query (Fig. 6b). Average time was
about 15.2 seconds for sequential access.
9 The results for tandem cosine distance were taken from the supplement of [20].

Parametrised Hausdorff Distance as a Non-Metric Similarity Model . . . 11

20

40

60

80

100

10 100 1000 10000

Q
u
a
li
ty
o
f
id
en
ti
fi
ca
ti
o
n
[%
]

k-NN query

1-NN
2-NN
10-NN
max-NN

0

5

10

15

20

25

30

35

40

10 100 1000 10000
0

5

10

15

20

25

30

35

40

D
is
t.
co
m
p
u
ta
ti
o
n
s
ra
ti
o
[%
]

A
v
er
a
g
e
ti
m
e
[s
]

k-NN query

Dist. comp.
Avg. time

Fig. 6. Non-metric search and k-NN queries - a) quality of identification, b) distance
computations ratio and average time.

6 Conclusions and Future Work

The parametrised Hausdorff distance for interpretation tandem mass spectra of
peptides was proposed. It was compared with cosine distance which is widely
discussed in mass spectrometry literature. The fuzzy and tandem cosine distance
were used in this paper. Tandem cosine distance shows worse results in terms
of quality identification than our algorithm. The fuzzy approach is moreover
slower in terms of distance computations ratio. Higher speed of tandem cosine
distance is a consequence of including the precursor mass filter. On the other
hand, embedding of precursor mass filter can be problematic when modeling of
the similarity of spectra corresponding to modified peptides is desired. Develop-
ment of more precise semimetrics can also reduce the need of complicated scoring
algorithms. The design of better modifier functions for parametrised Hausdorff
distance opens possibilities for further research. Finally, the abilities of k-NN
query for non-metric search were presented.

References

1. Z.B. Alfassi. On the normalization of a mass spectrum for comparison of two
spectra. Journal of the American Society for Mass Spectrometry, vol. 15, issue 3,
pp. 385-387. 2004.

2. R. Bayer and E.M. McCreight. Organization and Maintenance of Large Ordered
Indices. Acta Inf., vol. 1, pp. 173-189. 1972.

3. P. Ciaccia, M. Patella and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. Proc. of 23rd Int. Conf. on VLDB, pp. 426-
435. 1997.

4. V. Danč́ık, T.A. Addona, K.R. Clauser, J.E. Vath and P.A. Pevzner. De Novo
Peptide Sequencing via Tandem Mass Spectrometry. Journal of Computational
Biology, vol. 6, no. 3, pp. 327-342. 1999.

5. D. Dutta and T. Chen. Speeding up tandem mass spectrometry database search:
metric embeddings and fast near neighbor search. Bioinformatics Oxford Journal,
vol. 23, no. 5, pp. 612-618. 2007.

12 Jǐŕı Novák, David Hoksza

6. L.Y. Geer et al. Open Mass Spectrometry Search Algorithm. Journal of Proteome
Research, vol. 3, pp. 958-964. 2004.

7. D. Hoksza and T. Skopal. Index-based approach to similarity search in protein and
nucleotide databases. CEUR Proc. Dateso 2007, vol. 235, pp. 67-80. 2007.

8. D.F. Hunt et al. Protein sequencing by tandem mass spectrometry. Proc. Nati.
Acad. Sci. USA, vol. 83, pp. 6233-6237. 1986.

9. N.C. Jones and P.A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT
Press, Cambridge, Massachusetts. 2004.

10. A. Keller et al. Experimental Protein Mixture for Validating Tandem Mass Spectral
Analysis. Journal of Integrative Biology, vol. 6, no. 2, pp. 207-212. 2002.

11. B. Lu and T. Chen. A suffix tree approach to the interpretation of tandem mass
spectra: applications to peptides of non-specific digestion and post-translational
modifications. Bioinformatics Oxford Journal, vol. 19 (Suppl. 2), pp. 113-121. 2003.

12. MASCOT. http://www.matrixscience.com/.
13. Mass Spectrometry Protein Sequence Database (MSDB).

http://www.proteomics.leeds.ac.uk/bioinf/msdb.html.
14. E. Mortz et al. Sequence tag identification of intact proteins by matching tandem

mass spectral data against sequence data bases. Proc. Natl. Acad. Sci. USA, vol.
93, pp. 8264-8267. 1996.

15. K. Ning, H.K. Ng and H.W. Leong. PepSOM: An Algorithm for Peptide Identifi-
cation by Tandem Mass Spectrometry based on SOM. Genome Informatics, vol.
17, pp. 194-205. 2006.

16. J. Novák and D. Hoksza. An Application of the Metric Access Methods to the
Mass Spectrometry Data. IEEE CIBCB 2009. Nashville, TN, USA. ISBN 978-1-
4244-2756-7, pp. 220-227.

17. J.V. Olsen, S. Ong and M. Mann. Trypsin Cleaves Exclusively C-terminal to Argi-
nine and Lysine Residues. Molecular and Cellular Proteomics, vol. 3, pp. 608-614.
2004.

18. G.A. Petsko and D. Ringe. Protein Structure and Function (Primers in Biology).
New Science Press Ltd, London, UK. 2004.

19. ProteinProspector. http://prospector.ucsf.edu/.
20. S.R. Ramakrishnan et al. A fast coarse filtering method for peptide identification

by mass spectrometry. Bioinformatics Oxford Journal, vol. 22, no. 12, pp. 1524-
1531. 2006.

21. R.G. Sadygov, D. Cociorva and J.R. Yates III. Large-scale database searching
using tandem mass spectra: Looking up the answer in the back of the book. Nature
Methods, vol. 1, no. 3, pp. 195-202. 2004.

22. Sashimi proteomics repository.
http://sashimi.sourceforge.net/repository.html.

23. SEQUEST. http://fields.scripps.edu/sequest/.
24. T. Skopal. Unified Framework for Fast Exact and Approximate Search in Dissim-

ilarity Spaces. ACM Transactions on Database Systems (TODS), vol. 32, issue 4.
2007.

25. E. Ukkonen. On-line construction of suffix trees. Algorithmica, vol. 14, pp. 249-260.
1995.

26. UNIMOD. http://www.unimod.org/.
27. Y. Wan, A. Yang and T. Chen. PepHMM: A Hidden Markov Model Based Scoring

Function for Mass Spectrometry Database Search. Anal. Chem., vol. 78, pp. 432-
437. 2006.

28. P. Zezula, G. Amato, V. Dohnal and M. Batko. Similarity Search: The Metric
Space Approach (Advances in Database Systems). Springer, New York, USA. 2006.

Two-step Modified SOM for Parallel Calculation?

Petr Gajdoš and Pavel Moravec

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{petr.gajdos, pavel.moravec}@vsb.cz

Two-step Modified SOM for Parallel Calculation?

Petr Gajdoš and Pavel Moravec

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
{petr.gajdos, pavel.moravec}@vsb.cz

Abstract. This paper presents a simple modification of classic Kohonen network
(SOM), which allows parallel processing of input data vectors or partitioning
the problem in case of insufficient memory for all vectors from the training set.
The algorithm pre-selects potential centroids of data clusters and uses them as
weight vectors in the final SOM network. We have demonstrated the usage of this
algorithm on images as well as on two well-known datasets representing hand-
written digits.

Keywords: SOM, Kohonen Network, parallel calculation, handwritten digits

1 Introduction

With the massive boom of GPU-based calculations, massive parallelism, memory con-
siderations, simplicity of algorithms and CPU-GPU interaction have yet again to play
an important role. In this paper, we present a simple modification of classic Kohonen’s
self-organizing maps (SOM), which allows us to dynamically scale the computation to
fully utilize the GPU-based approach.

There were some attempts to introduce parallelism in Kohonen networks [4,6,5,7,8],
however we needed an approach which is simple and easy to implement. Moreover, it
should work both with and without the bulk-loading algorithm [2].

In this paper, we present such approach, which divides the training set into sev-
eral subsets and calculates the weights in multi-step approach. Calculated weights with
nonzero number of hits serve as input vectors of SOM network in the following step.
Presently, we use a two-step approach, however more steps could be used if necessary.

The paper is organized as follows: in second chapter we mention classic SOM net-
works and describe the basic variant we have used. In third chapter we describe our
approach and provide the calculation algorithm. The fourth chapter introduces experi-
mental data we have used and presents the results of comparison of results provided by
our method with classic SOM calculation.

2 Kohonen self-organizing neural network

In following paragraphs, we will shortly describe the Kohonen self-organizing neural
networks (self-organizing maps – SOM). The first self-organizing networks were pro-
? This work was partially supported by SGS, VŠB-Technical University of Ostrava, No.

SP/2010196 grant – Machine Intelligence

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 13–21, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

14 Petr Gajdoš, Pavel Moravec

1

... ...

dimX

dimY

0 0 0 0

m-1

BMU

BMU neighbors

1

Fig. 1. Kohonen network structure

posed in the beginning of 70’s by Malsburg and his successor Willshaw. SOM was
proposed by Teuvo Kohonen in in the early 1980s and has been improved by his team
since. The summary of this method can be found in [3].

The self-organizing map is one of the common approaches on how to represent and
visualize data and how to map the original dimensionality and structure of the input
space onto another – usually lower-dimensional – structure in the output space.

The basic idea of SOM is based on the human brain, which uses internal 2D or
3D representation of information. We can imagine the input data to be transformed to
vectors, which are recorded in neural network. Most neurons in cortex are organized in
2D. Only the adjacent neurons are interconnected.

Besides of the input layer is in SOM only the output (competitive) layer. The number
of inputs is equal to the dimension of input space. Every input is connected with each
neuron in the grid, which is also an output (each neuron in grid is a component in output
vector). With growing number of output neurons, the quality coverage of input space
grows, but so does computation time.

SOM can be used as a classification or clustering tool that can find clusters of input
data which are more closer to each other.

All experiments and examples in this paper respect following specification of the
SOM (see also the Figure 1):

– The SOM is initialized as a network of fixed topology. The variables dimX and
dimY are dimensions of such 2-dimensional topology.

– V m represents an m-dimensional input vector.
– Wm represents an m-dimensional weight vector.
– The number of neurons is defined as N = dimX ∗ dimY and every neuron n ∈<

0, N − 1 > has its weight vector Wm
n

– The neighborhood radius r is initialized to the value min(dimX, dimY)/2 and
will be systematically reduced to a unit distance.

– All weights vectors are updated after particular input vector is processed.

Two-step Modified SOM for Parallel Calculation 15

– The number of epochs e is know at the beginning.

The Kohonen algorithm is defined as follows:

1. Network initialization
All weights are preset to a random or pre-calculated value. The learning factor η,
0 < η < 1, which determines the speed of weight adaptation is set to a value
slightly less than 1 and monotonically decreases to zero during learning process.
So the weight adaptation is fastest in the beginning, being quite slow in the end.

2. Learning of input vector
Introduce k training input vectors V1, V2, . . . , Vk, which are introduced in random
order.

3. Distance calculation
An neighborhood is defined around each neuron whose weights are going to change,
if the neuron is selected in competition. Size, shape and the degree of influence of
the neighborhood are parameters of the network and the last two decrease during
the learning algorithm.

4. Choice of closest neuron
We select the closest neuron for introduced input.

5. Weight adjustment
The weights of closest neuron and its neighborhood will be adapted as follows:

Wij(t+ 1) = Wij(t) + η(t)h(v, t)(Vi −Wij(t)),

where i = 1, 2, . . . , dimX a j = 1, 2, . . . , dimY and the radius r of neuron’s local
neighborhood is determined by adaptation function h(v).

6. Go back to point 2 until the number of epochs e is reached.

To obtain the best organization of neurons to clusters, a big neighborhood and a big
influence of introduced input are chosen in the beginning. Then the primary clusters
arise and the neighborhood and learning factor are reduced. Also the η → 0, so the
changes become less significant with each iteration.

3 Proposed method

The main steps of SOM computation have been already described above. Following text
is focused on description of proposed method, that in the end leads to results similar
to the classic SOM (See also Figure 2 for illustration of our approach). We named
the method Global-Merged SOM, which suggests, that the computation is divided into
parts and then merged to obtain the expected result. Following steps describe the whole
process of GM-SOM:

1. Input set split
The set of input vectors is divided into a given number of parts. The precision of
proposed method increases with the number of parts, however, it has own disadvan-
tages related to larger set of vectors in the final phase of process. Thus the number
of parts will be usually determined from the number of input vectors. Generally,

16 Petr Gajdoš, Pavel Moravec

0

1

2

3

4

5

4

7

8

9

GM-SOMs

PSOMs

Fig. 2. GM-SOM: An Illustrative schema of the proposed method. All input vectors are divided
into ten parts in this case.

k � N ∗ p, where k is the number of input vector, N is the number of neurons and
p is the number of parts. The mapping of input vectors into individual parts does
not affect final result. This will be later demonstrated by the experiments, where
all the input vectors were either split sequentially (images) or randomly (sets of
handwritten digits).

2. In parts computation
Classic SOM method is applied on every part. For simplicity sake, an acronym
PSOM will be used from now on to indicate SOM, which is computed in a given
part. All PSOMs start with the same setting (the first distribution of weights vectors,
number of neurons, etc.) Such division speeds up parallel computation of PSOMs
on GPU. Moreover, the number of epochs can be lower in comparison with the
number of epochs in case of processing of input set by one SOM. This is repre-
sented by a factor f , which is going to be equal to 1

3 in our experiments.
3. Merging of parts

Weight vectors, that where computed in every part and correspond with neurons
with at least one hit, represent input vectors in the final phase of GM-SOM. The
unused neurons and their weight vectors have red color in Figure 2. Again, a new
SOM with the same setting is computed and output weights vectors make the final
result of proposed method.

The main difference between the proposed algorithm and well known batch SOM
algorithms is, that individual parts are fully independent on each other and they update
different PSOMs. Moreover, different SOM algorithms can be applied on PSOM of a
given part, which makes proposed algorithm more variable. Next advantage can be seen
in different settings of PSOMs. Thus more dense neuron network can be used in case
of larger input set. The last advantage consists in a possibility of incremental updating

Two-step Modified SOM for Parallel Calculation 17

of GM-SOM. Any additional set of input vectors will be processed by a new PSOM in
a separate part and the final SOM will be re-learnt.

4 Experiments

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 3. Black-and-white symbols – (a) Original, (b) Per-partes, (c) Overlaid results

18 Petr Gajdoš, Pavel Moravec

Our approach has been tested both on a generic set of black-and-white images as
well as on two well-known datasets used for machine learning which were obtained
from UCI repository [1].

In this section, we present examples of such results for a 10 × 10 hexagonal SOM
with 300 iterations for both the original SOM network and the final calculation. Each
partial SOM in our approach used 100 iterations (f = 1

3). Moreover, where reasonable,
a 20× 20 hexagonal SOM will be used.

In the first set of experiments, we have generated a collection of black-and-white
images, based on simple geometric shapes and symbols. Coordinates of black pixels
were considered the input vectors for this experiment. Given a sufficient number of
iterations, the weight vectors of Kohonen self-organizing neural network are known to
spread through the image and cover the black areas.

We have compared the original method with our approach on a wide selection of
shapes, ranging from simple convex shapes to complicated symbols consisting of sev-
eral parts. Each symbol was tested several times to reduce the impact of random ini-
tiation of the network weights. Our approach typically provided results which were
marginally better than the classic SOM. Some of the results are shown in Figure 3.

(a) (b)

Fig. 4. OCR of handwritten digits: (a) SOM hits in case of classic approach, (b) SOM hits of
proposed method. Black cells represent neurons without any hits.

For the second experiment, we have used Optical Recognition of Handwritten Digits
Data Set from UCI repository, containing 43 sets of hand-written digits from different

Two-step Modified SOM for Parallel Calculation 19

people. 30 sets of digits contributed to the training set and different 13 to the test set.
The digits were scanned as 32×32 bitmaps, which were then divided into 4×4 blocks.
The number of on pixels of each block has been recorded (to reduce the dimension and
reduce the impact of small distortions) resulting in 64 features with values ranging from
0 to 16. The results for all existing classes in original and our approach are shown in
Figure 6. Figure 4 shows the combined result based on SOM hits for the test set in both
10× 10 and 20× 20 networks. The results are again comparable for both methods.

(a) (b)

Fig. 5. Pen digits: (a) SOM hits in case of classic approach, (b) SOM hits of proposed method.
Black cells represent neurons without any hits.

The third experiment was conducted on Pen-Based Recognition of Handwritten
Digits Data Set. The data set consists of 250 samples from 44 writers with 30 writ-
ers were used for training and the remaining digits written by the other 14 writers were
used for testing. The recorded points were re-sampled to 8 x, y coordinates. The com-
bined result based on SOM hits for the test set in both 10 × 10 and 20 × 20 networks
for original and our approach is shown in Figure 5.

5 Conclusion

The need of parallel computation of SOM drove us to a new method, that has been
presented in this paper. Although it has some common features with well known SOM
batch or hierarchical algorithms, it is not one of them, as it has its unique properties.

20 Petr Gajdoš, Pavel Moravec

(a) Classic SOM (b) GM-SOM

Fig. 6. OCR of handwritten digits: Particular classes of neurons, that indicate digits 0–9 are illus-
trated separately.

Firstly, the proposed algorithm can utilize the power of batch processing in all inner
parts (PSOMs). Moreover, all PSOMs can have different number of neurons in their
networks, which could be found in hierarchical algorithms. Lastly, our method excludes
neurons, which do not cover any input vectors in the intermediate phase of GM-SOM.

All experiments suggest, that the results are very close to results provided by classic
SOM algorithm. We would like to test the proposed algorithm on huge data collections
in the near future.

Two-step Modified SOM for Parallel Calculation 21

References

1. A. Asuncion and D. Newman. UCI machine learning repository, 2007.
2. J. Fort, P. Letremy, and M. Cottrel. Advantages and drawbacks of the batch kohonen algo-

rithm. In 10th-European-Symposium on Artificial Neural Networks, Esann’2002 Proceed-
ings., pages 223–230, 2002.

3. T. Kohonen. Self-Organizing Maps. Springer Verlag, Berlin, second (extended) edition, 1997.
4. R. Mann and S. Haykin. A parallel implementation of Kohonen’s feature maps on the warp

systolic computer. In Proc. IJCNN-90-WASH-DC, Int. Joint Conf. on Neural Networks, vol-
ume II, pages 84–87, Hillsdale, NJ, 1990. Lawrence Erlbaum.

5. T. Nordström. Designing parallel computers for self organizing maps. In Forth Swedish
Workshop on Computer System Architecture, 1992.

6. S. Openshaw and I. Turton. A parallel kohonen algorithm for the classification of large spatial
datasets. Computers & Geosciences, 22(9):1019–1026, November 1996.

7. I. Valova, D. Szer, N. Gueorguieva, and A. Buer. A parallel growing architecture for self-
organizing maps with unsupervised learning. Neurocomputing, 68:177 – 195, 2005.

8. L. Wei-gang. A Study of Parallel Self-Organizing Map. In Proceedings of the International
Joint Conference on Neural Networks, 1999.

Answering Metric Skyline Queries by PM-tree

Tomáš Skopal and Jakub Lokoč

Department of Software Engineering, FMP
Charles University in Prague, Czech Republic

{skopal, lokoc}@ksi.mff.cuni.cz

Answering Metric Skyline Queries by PM-tree

Tomáš Skopal and Jakub Lokoč

Department of Software Engineering, FMP
Charles University in Prague, Czech Republic

{skopal, lokoc}@ksi.mff.cuni.cz

Abstract. The task of similarity search in multimedia databases is usu-
ally accomplished by range or k nearest neighbor queries. However, the
expressing power of these “single-example” queries fails when the user’s
delicate query intent is not available as a single example. Recently, the
well-known skyline operator was reused in metric similarity search as
a “multi-example” query type. When applied on a multi-dimensional
database (i.e., on a multi-attribute table), the traditional skyline opera-
tor selects all database objects that are not dominated by other objects.
The metric skyline query adopts the skyline operator such that the mul-
tiple attributes are represented by distances (similarities) to multiple
query examples. The metric skyline is supposed to constitute a set of
representative database objects which are as similar to all the examples
as possible and, simultaneously, are semantically distinct. In this paper
we propose a technique of processing the metric skyline query by use of
PM-tree, while we show that our technique significantly outperforms the
original M-tree based implementation in both time and space costs.

1 Introduction

As the volumes of complex unstructured data collections grow almost exponen-
tially in time, the attention to content-based similarity search steadily increases.
The concept of numeric similarity between two data entities is one of the ap-
proaches used for querying unstructured data, where a similarity function serves
as a multi-valued relevance of data objects to a query (example) object. The
content-based similarity search paradigm has been successfully employed in ar-
eas like multimedia databases, time series retrieval, bioinformatic and medical
databases, data mining, and others. At the same time, the “similarity-centric”
view on such data demands specific alternative techniques for modeling, index-
ing and retrieval, which dramatically differ from the traditional approaches to
management of structured data (e.g., B-trees in relational databases).

In the rest of the section we introduce into the fundamentals of similarity
search and briefly summarize the paper contributions.

1.1 Similarity search

Given a collection C of unstructured data entities (e.g., multimedia objects, like
images), to query the collection we need to establish a model consisting of the

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 22–37, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Answering Metric Skyline Queries by PM-tree 23

object universe U, a transformation function (a feature extraction method, resp.)
t : C → U, and a similarity function δ : U×U→ R. The transformation t turns
the collection C of original data entities into a database of descriptors S ⊂ U. In
most cases the similarity function δ is expected to be a metric distance, because
metric properties can be effectively used to index the database S for efficient
(fast) query processing, as discussed later in Section 1.2.

Single-example queries. The portfolio of available similarity query types con-
sists of mostly single-example queries. The range query and the k nearest neigh-
bor (kNN) query represent the two most popular similarity query types. Using
a range query (Q, rQ) we ask for all objects Oi ∈ S the distances of which to a
single query object Q are at most rQ. On the other hand, a kNN query (Q, k)
selects the k database objects closest to Q.

Besides range and kNN queries, there exist some less frequently used query
types, like reverse (k)NN queries [15], returning those database objects having
the query object Q within their (k) nearest neighbor(s).

Multi-example queries. Although the single-example queries are frequently
used nowadays, their expressive power may become unsatisfactory in the future
due to increasing complexity and quantity of available data. The acquirement of
a query (example) object is the user’s “ad-hoc” responsibility. However, when
just a single example should represent the user’s delicate intent on the subject
of retrieval, finding such an example could be a hard task. Hence, instead of
querying by a single example, an easier way for the user could be a specification
of several query examples which jointly describe the query intent. Such a multi-
example approach allows the user to set the number of query examples and
to weigh the contribution of individual examples. Moreover, obtaining multiple
examples, where each example corresponds to a partial query intent, is much
easier task than finding a single “holy-grail” example.

In this paper we deal with metric skyline query (detailed in the Section 2),
which represents a “native” multi-example query type.

1.2 Metric access methods

When the similarity function δ is a distance metric, the metric access methods
(MAMs) can be used for efficient (fast) similarity query processing [16, 11, 2].
The principle behind all MAMs is the utilization of metric postulates (positive-
ness, symmetry and triangle inequality), which allow to partition the data space
into equivalence classes of close (similar) data objects. The classes are embedded
within a data structure which is stored in an index file, while the index is later
used to quickly answer range, kNN, or other similarity queries. In particular,
when issued a similarity query, the MAMs exclude many non-relevant equiva-
lence classes from the search (based on metric properties of δ), so only several
candidate classes of objects have to be exhaustively (sequentially) searched. In
consequence, searching a small number of candidate classes turns out in reduced
cost of the query. The number of distance computations δ(·, ·) is considered as

24 Tomáš Skopal, Jakub Lokoč

the major component of the overall costs when indexing or querying a database.
Some other cost components (like I/O costs, internal CPU costs) could be taken
into consideration when the computational complexity of δ is low.

In the following we briefly describe the M-tree and the PM-tree, two MAMs
used further in the paper for implementation of metric skyline queries.

M-tree. The M-tree [5] is a dynamic metric access method that provides good
performance in database environments. The M-tree index is a hierarchical struc-
ture, where some of the data objects are selected as centers (references or local
pivots) of ball-shaped regions, and the remaining objects are partitioned among
the regions in order to build up a balanced and compact hierarchy, see Figure 1.

Fig. 1. (a) M-tree (b) Basic filtering (c) Parent filtering.

Each region (subtree) is indexed recursively in a B-tree-like (bottom-up) way
of construction. The inner nodes of M-tree store routing entries

routM (R) = [R, rR, δ(R,Par(R)), ptr(T (R))]

where R is a data object representing the center of the respective ball region,
rR is a covering radius of the ball, δ(R,Par(R)) is so-called to-parent distance
(the distance from R to the object P of the parent routing entry), and finally
ptr(T (R)) is a pointer to the entry’s subtree T (R). In order to correctly bound
the data in T (R)’s leaves, the routing entry must satisfy the nesting condition:
∀Oi ∈ T (R), rR ≥ δ(R,Oi). The data is stored in the leaves of M-tree. Each leaf
contains ground entries

grndM (D) = [D, id(D), δ(D,Par(D))]

whereD is the data object itself (externally identified by id(D)), and δ(D,Par(D))
is, again, the to-parent distance. See an example of entries in Figure 1a.

The queries are implemented by traversing the tree, starting from the root.
Those nodes are accessed, the parent regions of which are overlapped by the
query region, e.g., by a range query ball (Q, rQ). The check for region-and-query
overlap requires an explicit distance computation δ(R,Q) (called basic filter-
ing). In particular, if δ(R,Q) ≤ rQ + rR, the data ball (R, rR) overlaps the query

Answering Metric Skyline Queries by PM-tree 25

(Q, rQ), thus the child node has to be accessed, see Figure 1b. If not, the respec-
tive subtree is filtered from further processing. Moreover, each node in the tree
contains the distances from the routing/ground entries to the center of its parent
routing entry (the to-parent distances). Hence, some of the M-tree branches can
be filtered without the need of a distance computation, thus avoiding the “more
expensive” basic overlap check. In particular, if |δ(P,Q)− δ(P,R)| > rQ + rR,
the data ball R cannot overlap the query ball (called parent filtering), thus the
child node has not to be re-checked by basic filtering, see Figure 1c. Note δ(P,Q)
was already computed at the unsuccessful parent’s basic filtering.

PM-tree. The idea of PM-tree [12, 14] is to enhance the hierarchy of M-tree
by an information related to a static set of p global pivots Pi ∈ P ⊂ U. In
a PM-tree’s routing entry, the original M-tree-inherited ball region is further
cut off by a set of rings (centered in the global pivots), so the region volume
becomes more compact – see Figure 2a. Similarly, the PM-tree ground entries are
enhanced by distances to the pivots, which are interpreted as rings as well. Each
ring stored in a routing/ground entry represents a distance range (bounding the
underlying data) with respect to a particular pivot. A routing entry in PM-tree
inner node is defined as:

routPM (R) = [R, rR, δ(R,Par(R)), ptr(T (R)),HR],

where the new HR attribute is an array of phr intervals (phr ≤ p), where the t-th
interval HRPt is the smallest interval covering distances between the pivot Pt

and each of the objects stored in leaves of T (R), i.e. HRPt = 〈HRmin
Pt

, HRmax
Pt
〉,

HRmin
Pt

= min{δ(Oj , Pt)}, HRmax
Pt

= max{δ(Oj , Pt)}, ∀Oj ∈ T (R). The inter-
val HRPt together with pivot Pt define a ring region (Pt,HRPt); a ball region
(Pt,HRmax

Pt
) reduced by a ”hole” (Pt,HRmin

Pt
). A ground entry in PM-tree leaf is

defined as:
grndPM (D) = [D, id(D), δ(D,Par(D)),PD],

where the new PD attribute stands for an array of ppd pivot distances (ppd ≤ p)
where the t-th distance PDPt

= δ(R,Pt).

The combination of all the p entry’s ranges produces a p-dimensional min-
imum bounding rectangle (MBR), hence, the global pivots actually map the
metric regions/data into a “pivot space” of dimensionality p (see Figure 2b).

When issuing a range or kNN query, the query object is mapped into the
pivot space – this requires p extra distance computations δ(Q,Pi),∀Pi ∈ P. The
mapped query ball (Q, rQ) forms a hyper-cube 〈δ(Q,P1)− rQ, δ(Q,P1) + rQ〉 ×
· · · × 〈δ(Q,Pp)− rQ, δ(Q,Pp) + rQ〉 in the pivot space that is repeatedly utilized
to check for an overlap with routing/ground entry’s MBRs (see Figures 2a,b). If
they do not overlap, the entry is filtered out without any distance computation,
otherwise, the M-tree’s filtering steps (parent & basic filtering) are applied.

Note the MBRs overlap check does not require an explicit distance com-
putation, so the PM-tree usually achieves significantly lower query costs when
compared with M-tree – up to an order of magnitude (see [12–14]).

26 Tomáš Skopal, Jakub Lokoč

Fig. 2. (a) PM-tree employing 2 pivots (P1, P2). (b) Projection of PM-tree into the
“pivot space”.

1.3 Paper contributions

In this paper we introduce metric skyline processing by use of PM-tree. We follow
the pioneer work [3] where the concept of metric skyline query was introduced,
and its implementation utilizing M-tree was proposed. In Section 2 the metric
skyline query and its original implementation is discussed, while in Section 3
we propose our original PM-tree implementation of metric skyline processing.
In experimental results (Section 4) we show that PM-tree based metric skyline
processing outperforms the original M-tree implementation not only in terms of
distance computation costs, but also in terms of I/O costs, internal CPU costs
and internal space costs.

2 Metric skyline queries

In relational databases, the multi-criterial retrieval is popular in situations where
a query exactly specifying the desired attribute ranges cannot be effectively
issued. Instead, there is a need for a simplified query concept which selects
the desired database objects by some aggregation technique. Besides the top-k
queries [6], a popular multi-criterial technique is the skyline operator [1].

2.1 The Skyline Operator

The traditional skyline operator is an advanced retrieval technique that selects
objects from a multidimensional database that are “the best” from the global
point of view. The only assumption on the database is that the attribute domains
(dimensions) are linearly ordered, such that the lower (or higher) value of an
attribute is, the better the object is (in that attribute). In the rest of the paper
we use the convention that a lower value in an attribute is better.

The skyline operator selects all objects from the database (the skyline set),
that are not dominated by any other object. An object O1 dominates another
object O2 if at least one of O1’s attribute values is lower than the same attribute
inO2, and the other attribute values inO1 are lower or equal to the corresponding
attribute values in O2. Hence, O1 is the dominating object, while O2 is the

Answering Metric Skyline Queries by PM-tree 27

dominated object. In Figure 3a see an example of skyline set consisting of 5
objects, dominating the remaining 6 objects.

Fig. 3. (a) Skyline set and the dominated objects. A dominating-dominated (a) object
and (b) rectangle (MDDR).

Skyline Processing. There exist many approaches to the efficient implemen-
tation of the skyline operator, while we outline two of them – the Sort-First
Skyline algorithm [1] and the branch-and-bound algorithm which will be useful
further in the paper.

In the Sort-First Skyline algorithm, the database objects Oi are just or-
dered ascendentally based on the L1 norm on attributes (coordinates) of Oi, i.e.,
||Oi||L1 = O1

i +O2
i + · · ·+On

i . Then, following the L1 order, the sorted database
is passed such that each visited object Oi is checked whether it is dominated
by the already determined skyline objects. If Oi is not dominated, it is added
to the skyline set (empty at the beginning), otherwise, Oi is ignored. After the
one-pass database traversal is finished, the skyline set is complete. The algorithm
is correct because of the L1-norm ordering. Suppose an object Oi is being pro-
cessed (see Figure 3b). Because every object possibly dominating Oi lies in the
dominating area, its L1 norm must be lower than that of Oi. However, such an
object has already been visited (and possibly added to the skyline set) because
of the ordered database traversal. Thus, Oi can be either safely added to the
skyline set or filtered out.

The branch-and-bound approach employs a spatial access method (SAM),
e.g. the R-tree [8]. The database is indexed by the SAM, while for the skyline
processing a memory-resident priority heap is additionally utilized. The heap
priority is defined, again, as the L1 norm, however, besides the database objects
themselves, the heap may contain also minimum bounding rectangles (MBRs,
natively maintained by, e.g., R-tree). For future use outside the scope of SAM,
we call MBRs as minimum dominating-dominated rectangles (MDDRs). The
MDDRs serve as spatial rectangular approximations of the underlying database
objects (or nested MDDRs), while they can be effectively used for filtering. The
order of an MDDR within the heap is defined by the L1 norm of its minimal
corner (the point of MDDR with minimal values in all dimensions), which is the
maximal lower bound to L1 norm of any object inside the MDDR.

28 Tomáš Skopal, Jakub Lokoč

2.2 Metric Skyline Queries

The spatial skyline queries were generalized recently to support an arbitrary
metric distance δ (i.e., not just Euclidean), constituting thus the metric skyline
queries (MSQ) [3, 4].

Generally speaking, the metric skyline model just adds an abstract transfor-
mation step before the usual skyline processing. The step consists of transfor-
mation of a database in a metric space into database in m-dimensional vector
space through a set Q of m = |Q| query examples. In the second step, the
traditional skyline operator is performed on the transformed database. In par-
ticular, a database object Oi in the metric space is transformed into a vector Vi,
where its j-th coordinate is defined as the distance from j-th query to Oi, i.e.,
Vi = 〈δ(Q1, Oi), δ(Q2, Oi), . . . , δ(Qm, Oi)〉, Qj ∈ Q.

Motivation. The motivation for MSQ can be seen in the insufficient expressive
power of range and kNN queries, as mentioned in Section 1.1. Besides the pos-
sibility of employing multiple query examples, the metric skyline query has also
another unique property, the absence of query extent, i.e., the query is defined
just by the set Q. This property could be seen as both advantage and disad-
vantage. The advantage is that metric skyline query returns all distinct objects
from the database that are as similar to the query examples as possible. Hence,
we obtain all such objects; we are freed from tuning the precision and recall pro-
portion. Unfortunately, the disadvantage of MSQ is the skyline set (answer set)
size. If m = |Q| = 1 we obtain a regular 1-NN query. However, with increasing
m the skyline size usually grows substantially, while a skyline set size exceeding
several percent of the database is usually useless for an end-user. Thus, to be
discriminative enough, the metric skyline query should employ only a few query
examples (say, 2–5).

M-tree Based Implementation. The above described straightforward two-
step abstraction is not suitable for implementation of MSQ. An explicit trans-
formation of the original database S into a metric space would require expensive
static preprocessing of the database, consisting of |Q|·|S| distance computations,
extra storage costs, etc. Remember, the main cost component in similarity search
by MAMs is the number of distance computations, so any MSQ algorithm should
be designed to avoid computing as many distances as possible.

The authors of metric skyline queries proposed a native MSQ processing by
M-tree [3, 4], where the transformation step was applied only on a part of the
database that cannot be skipped during the processing. Basically, the M-tree
based metric skyline algorithm was inspired by the traditional skyline processing
by R-tree and the priority heap H under L1 norm (as described in Section 2.1).

In the following we have re-formulated the original description in [3, 4] to the
more abstract MDDR formalism, due to its easier extensibility to our original
contribution in Section 3. The modification of R-tree based skyline processing to
the metric case resides in an “on-the-fly” derivation of MDDRs, which cover the
transformed data objects. Instead of “native” R-tree MDDRs (MBRs, resp.), we
distinguish two types of derived MDDRs in M-tree, as follows:

Answering Metric Skyline Queries by PM-tree 29

(1) The Par-MDDR (parent MDDR) of a routing/ground entry entry(R, rR, · · ·),
constructed by use of the parent routing entry rout(P, · · ·) as MDDRPar =
〈LBQ1

Par, UB
Q1
Par〉×· · ·×〈LBQm

Par, UB
Qm

Par〉, where LBQi

Par is a lower-bound distance
from Qi to the region (R, rR) (through its parent P), while UBQi

Par is an upper-
bound distance from Qi to (R, rR). Thus, LBQi

Par = max(δ(Qi, P)− (δ(P,R) +
rR), (δ(P,R)− rR)− δ(Qi, P), 0), and UBQi

Par = δ(Qi, P) + δ(P,R) + rR.

(2) The B-MDDR (basic MDDR), constructed directly from a routing/ground
entry as MDDRB = 〈δ(Q1, R) − rR, δ(Q1, R) + rR〉 × · · · × 〈δ(Qm, R) −
rR, δ(Qm, R) + rR〉. In consequence, B-MDDR of ground entry is a single point.

Obviously, we have chosen the terms “Par-MDDR” and “B-MDDR” due to
the analogy with parent- and basic filtering used when processing a range or
kNN query in M-tree. The Par-MDDR of a routing/ground entry can be derived
without an explicit distance computation; the δ(Qi, P) distances were already
computed during the top-down M-tree traversal. The derivation of B-MDDR is
more expensive, it requires m computations of δ(R,Qi),∀Qi ∈ Q.

An MDDR M1 dominates all objects inside an MDDR M2 if the L1 norm of
M1’s maximal corner is lower than the L1 norm of M2’s minimal corner, where
a max/min corner is the point with max/min values in all dimensions of an
MDDR. For an example of Par-MDDR and B-MDDR, see Figure 4.

Fig. 4. (a) Metric space with M-tree regions (b) Transformed vector space with MDDRs

The MSQ algorithm starts by inserting routing entries from the M-tree root
into the heap H. The heap keeps order given by L1 norm applied on the entries’
B-MDDRs’ minimal corners. Then a loop follows until the heap gets empty:

(1) An entry entry(R, . . .) with the lowest L1 value of its B-MDDR is popped
from the heap.
(2) If the entry is a ground entry, it is added to the set of skyline objects. All
entries on the heap which are dominated by this new skyline object are removed.
Jump to Step 1.
(3) If the entry is a routing entry, the entry’s child node is fetched. The Par-
MDDRs of the child node’s entries are checked for dominance by the set of
already determined skyline objects, while the dominated ones (and the respective
subtrees, in case of routing entries) are filtered from further processing.

30 Tomáš Skopal, Jakub Lokoč

(4) The B-MDDRs of the non-filtered child entries are derived. Those entries
not dominated by the already retrieved skyline set are inserted into the heap.
Jump to Step 1.

Discussion. Unfortunately, in the original contribution [3, 4] the cost analysis
and also the experiments were focused solely on measuring the number of dom-
inance checks, i.e., how many times B-MDDRs and Par-MDDRs were checked
for dominance by a skyline object. The authors completely ignored the number
of distance computations (the crucial performance factor for any MAM), but
also the heap size and the number of operations on heap, spent by running the
metric skyline algorithm on M-tree.

As we present later in experimental evaluation, the M-tree based algorithm,
as proposed in [3, 4], is extremely inefficient in terms of the heap size and the
number of operations on the heap. In fact, the maximal heap size could reach the
size of the database, making such an implementation inapplicable in database
environments. In the following section we introduce our PM-tree based method,
which not only decreases the number of distance computations spent for metric
skyline processing, but also drastically decreases the maximal heap size and the
number of operations on the heap.

3 PM-tree based metric skyline

The M-tree based approach to metric skyline processing can be extended to a
PM-tree based implementation. In the following we introduce an algorithm that
makes use of the PM-tree’s extensions over the M-tree – the pivot set P and the
respective ring regions maintained by routing/ground entries in PM-tree nodes
(for PM-tree details see Section 1.2).

First of all, when a metric skyline query is started, a query-to-pivot matrix
of pair-wise distances between the PM-tree pivots Pi ∈ P and query examples
Qi ∈ Q is computed. The PM-tree based algorithm (see Section 3.4) then utilizes
the following three filtering concepts (Sections 3.1–3.3).

3.1 Deriving Piv-MDDRs

Besides the M-tree’s B-MDDRs and Par-MDDRs derived from a routing/ground
entry(R, · · · ,HR/PD), an additional MDDR can be derived from the set of rings
HR/PD maintained by the entry, called Piv-MDDR (pivot MDDR). The Piv-
MDDR can be derived using the query-to-pivot matrix, as
MDDRPiv = 〈LBQ1

Piv, UB
Q1
Piv〉 × · · · × 〈LBQm

Piv , UB
Qm

Piv〉, where
LBQi

Piv = maxPj∈P{δ(Pj , Qi)−HRmax
Pj

,HRmin
Pj
− δ(Pj , Qi), 0}, and

UBQi

Piv = minPj∈P{δ(Pj , Qi) + HRmax
Pj
}.

Similarly as the M-tree’s Par-MDDR, the derivation of Piv-MDDR requires
no extra distance computation, however, Piv-MDDRs are much more compact
than Par-MDDRs. This results in more effective filtering of routing/ground en-
tries by skyline objects or some dominating MDDRs. Moreover, the Piv-MDDR

Answering Metric Skyline Queries by PM-tree 31

is often even more compact than the direct B-MDDR, because the PM-tree’s
rings reduce the volume of the original M-tree’s sphere. In Figure 5 see an ex-
ample of Piv-MDDR, Par-MDDR and B-MDDR, when 2-pivot PM-tree and 2
query examples are used.

Fig. 5. A PM-tree routing entry in (a) metric space and (b) mapped to Piv-, Par-, and
B-MDDR. (c) A pivot skyline.

3.2 Pivot-Skyline filtering

If the pivots Pi come from the database (i.e., Pi ∈ P ⊂ S), the MDDRs that are
about to be inserted into the heap can be checked for a dominance by the pivots.
Since the query-to-pivot matrix is computed at the beginning of every metric
skyline query processing, the transformation of the pivots into the “query space”
requires no additional distance computations. Moreover, to reduce the number of
pivots used for dominance checking, we can determine the so-called pivot skyline
– those pivot objects, which constitute a metric skyline within the pivot set P
itself, see an example in Figure 5c.

The filtering by use of pivot skyline is beneficial in the early phase of the
metric skyline processing, when the set of determined skyline objects is still
empty. In the experiments we show that such an early phase is the dominant
phase of the entire skyline processing – 80-90% of the total distance computations
is performed before the first skyline object is found. Hence, pruning the heap by
use of the pivot skyline greatly helps to reduce the heap size and, consequently,
the number of operations on the heap. Note: As the number of determined
skyline objects grows, the objects in the pivot skyline become dominated by
the “regular” skyline objects. Hence, in order to effectively use the pivots for
dominance checking, we keep just those pivots in the pivot skyline, that are
not dominated by the already determined skyline objects. Thus, at the moment
when all skyline objects are known, the pivot skyline becomes empty.

3.3 Deferred heap processing

In the original M-tree algorithm, the priority heap contains just L1-ordered B-
MDDRs (together with the associated routing/ground entries). When an entry
is to be inserted into the heap, its B-MDDR must be determined, see Steps
3,4 of the algorithm in Section 2.2. We call this approach a non-deferred heap
processing.

32 Tomáš Skopal, Jakub Lokoč

However, the non-deferred heap processing is not optimal in terms of the
number of distance computations. In order to save some distance computations,
we propose the deferred heap processing for the metric skyline, inspired by the
Hjaltason’s & Samet’s incremental nearest neighbor algorithm, which is optimal
in the number of distance computations [9]. The modified heap is generalized
such that it may contain not only B-MDDRs of routing/ground entries, but also
the intersections of their Piv-MDDR and Par-MDDR (denoted as Piv-MDDR ∩
Par-MDDR). The deferred heap processing then deals with two situations:
(1) An entry equipped by B-MDDR is popped from the heap. Then,
(a) If the entry is a ground entry, it becomes a skyline object.
(b) If the entry is a routing entry, its child node is fetched, while for every entry
in the child node the Piv-MDDR ∩ Par-MDDR is checked for a dominance by
the skyline set. Every not-dominated child entry is equipped by its Piv-MDDR
∩ Par-MDDR and inserted into the heap.
(2) An entry equipped by Piv-MDDR ∩ Par-MDDR is popped from the heap
and checked for a dominance by the skyline set. If not dominated, the entry’s
B-MDDR is determined and, if still not dominated, inserted back into the heap.

Listing 1 (Algorithm of PM-tree based metric skyline query)

MSQuery()
{
Input: PM-tree PM, query points Q, type (’M-tree’, ’PM-tree’,

’PM-tree+PSF’, ’PM-tree+PSF+DEF’)
Output: Result MSS containing skyline points

if (type is not ’M-tree’)
P2Q DM = evaluate the query-to-pivot matrix
// pivots must be DB objects
PSL = evaluate pivot skyline (using P2Q DM)

Insert all routing entries + their Piv-MDDR ∩ B-MDDR from the
PM-tree root into the heap H

while (H is not empty)
currentEntry = pop entry from the heap H
if (currentEntry is not equipped by ’B-MDDR’)

FilterAndInsert(currentEntry, currentEntry, type, true)
else if (currentEntry is of type ’ground entry’ and is equipped by

’B-MDDR’)
Insert currentEntry into MSS
H.FilterDominatedObjectsBy(currentEntry.MDDR)
PSL.FilterDominatedObjectsBy(currentEntry.MDDR)

else
N = fetch child node of currentEntry
for each childEntry in N

FilterAndInsert(childEntry, currentEntry, type, false)
}

FilterAndInsert(newEntry, parentEntry, type, deferred)
{

if (not deferred)
Equip newEntry by its Par-MDDR
if (type is not ’M-tree’)

Update newEntry.MDDR by intersection with newEntry’s Piv-MDDR
if (Filter(newEntry, type))

return
if (type = ’PM-tree+PSF+DEF’ and not deferred)

Insert newEntry into H
return

Equip newEntry by its B-MDDR
if (Filter(newEntry, type))

return
Insert newEntry into H

}

Filter(newEntry, type)
{

for each Oi in MSS
if (newEntry.MDDR is dominated by Oi)

return true
if (type is ’M-tree’ or ’PM-tree’)

return false
for each Oi in PSL

if (newEntry.MDDR is dominated by Oi)
return true

return false
}

3.4 The algorithm

In Listing 1 the algorithm for metric skyline query is presented, including the
original M-tree variant as well as the proposed PM-tree extensions.

The input attribute type allows to set the MSQ variant as follows: type =
’M-tree’ is the original M-tree based algorithm, type = ’PM-tree’ is the basic PM-
tree based algorithm using the Piv-MDDR filtering (as described in Section 3.1),
type = ’PM-tree+PSF’ additionally uses the pivot-skyline filtering (as described
in Section 3.2), and type = ’PM-tree+PSF+DEF’ additionally uses the deferred
heap processing (as described in Section 3.3).

Answering Metric Skyline Queries by PM-tree 33

4 Experimental evaluation

We performed an extensive experimentation with the three new variants of the
PM-tree based metric skyline processing, comparing them against the original
M-tree based method. Instead of the number of dominance checks (as included in
the original contribution [3, 4]), we have observed other 4 measures of costs spent
by the MSQ processing – the number of distance computations, the number of
operations on the heap, the maximal allocated size of the heap, and finally the
I/O costs.

In addition to the absolute numbers presented in the figures below, we also
relate the number of distance computations spent by (P)M-tree MSQ processing
to the costs of MSQ processed by simple sequential search, which takes |Q| · |S|
distance computations for every query.

4.1 The testbed

We have used two databases, a subset of the CoPhIR database [7] of MPEG7
image features extracted from images downloaded from flickr.com, and a syn-
thetic database of polygons. The CoPhIR database, consisting of one million fea-
ture vectors, was projected into two subdatabases, the CoPhIR 12 database, con-
sisting of 12-dimensional color layout descriptors, and the CoPhIR 76 database,
consisting of 76-dimensional descriptors (12-dimensional color layout and 64-
dimensional color structure). As a distance function the Euclidean (L2) distance
was employed.

The Polygons database was a synthetic randomly generated set of 250,000 2D
polygons, each polygon consisting of 5–15 vertices. The Polygons should serve
as a non-vectorial analogy to clustered points. The first vertex of a polygon was
generated at random. The next one was generated randomly, but the distance
from the preceding vertex was limited to 10% of max. distance in the space.
We used the Hausdorff distance [10] for measuring the distance between two
polygons, so here a polygon could be interpreted as a cloud of points.

4.2 Experiment settings

The query costs were always averaged for 200 metric skyline queries, while the
query examples followed the distribution of database objects. As the parameters
we observed various database sizes, the (P)M-tree node capacities, the number
of query examples, and the number of PM-tree leaf pivots. The (P)M-tree node
capacities ranged from 20 to 40 routing/ground entries, the index sizes took
200MB–2GB, the P(M)-tree heights were 3–5 (4–6 levels). The minimal (P)M-
tree node utilization was set to 20% of node capacity. The number of PM-tree
leaf pivots ranged from 30 to 1000, while the number of inner pivots ranged from
15 to 500. Unless otherwise stated, the number of MSQ query examples was 2,
the (P)M-tree node size was 20, the number of leaf pivots was 1000 for CoPhIR
and 300 for Polygons (the number of inner pivots was half the number of leaf
pivots).

34 Tomáš Skopal, Jakub Lokoč

4.3 The results

In the first set of experiments, the number of PM-tree leaf pivots was increasing,
see Figure 6. When considering Polygons database, the M-tree’s MSQ got to 17%
of distance computations needed by simple sequential search on the Polygons
database. However, for the highest number of pivots the PM-tree’s MSQ reduced
the M-tree costs by another 35%. The heap size required by PM-tree reached
only up to one third of the heap size required by the M-tree. The impact of
pivot-skyline filtering (the +PSF(+DEF) variants) on the maximal heap size
was significant.

50 100 150 200 250 300

5
5

0
0

0
6

0
0

0
0

6
5

0
0

0
7

0
0

0
0

7
5

0
0

0
8

0
0

0
0

8
5

0
0

0

POLYGONS

number of pivots

n
u

m
b

e
r

o
f

d
is

ta
n

c
e

 c
o

m
p

u
ta

ti
o

n
s

M-tree
PM-tree
PM-tree+PSF
PM-tree+PSF+DEF

100 200 300 400 500 600 700 800 900 1000

7
0

0
0

0
0

9
0

0
0

0
0

1
1

0
0

0
0

0
1

3
0

0
0

0
0 CoPhIR_12

number of pivots

n
u

m
b

e
r

o
f

d
is

ta
n

c
e

 c
o

m
p

u
ta

ti
o

n
s

M-tree
PM-tree
PM-tree+PSF
PM-tree+PSF+DEF

100 200 300 400 500 600 700 800 9001
5

0
0

0
0

0
1

6
0

0
0

0
0

1
7

0
0

0
0

0
1

8
0

0
0

0
0

CoPhIR_76

number of pivots

n
u

m
b

e
r

o
f

d
is

ta
n

c
e

 c
o

m
p

u
ta

ti
o

n
s

M-tree
PM-tree
PM-tree+PSF
PM-tree+PSF+DEF

50 100 150 200 250 300

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0
3

5
0

0
0

POLYGONS

number of pivots

m
a

x
im

a
l
h

e
a

p
 s

iz
e

M-tree
PM-tree
PM-tree+PSF+DEF
PM-tree+PSF

100 200 300 400 500 600 700 800 900

0

5
1

0

1

5
2

0

 2
5

CoPhIR_76

number of pivots

n
u

m
b

e
r

o
f

h
e

a
p

 o
p

e
ra

ti
o

n
s
 (

x
 1

 0
0

0
 0

0
0

)

PM-tree+PSF+DEF
M-tree
PM-tree
PM-tree+PSF

Fig. 6. Increasing number of pivots: distance computations, maximal heap size

The same situation is presented for the Cophir 12 database. The results are
even better as for Polygons – the number of distance computations for PM-
tree+PSF+DEF variant was reduced to 60% of M-tree costs, while the maximal
heap size was reduced down to 8% of the heap size required by M-tree (note the
log.scale in the figure).

Finally, the same situation is presented for the high-dimensional Cophir 76
database. Because of the high dimensionality, the M-tree performance was poor
– it got to 91% distance computations required by simple sequential search. The
PM-tree performed better, achieving 75% of the sequential search’s distance
computations. The PM-tree+PSF+DEF variant performs poorly when looking
at the number of heap operations, due to the deferred heap processing, i.e.,
repeated insertions of MDDRs into the heap (see Section 3.3). On the other
hand, the +DEF variant steadily achieves the lowest distance computation costs
(as expected). The PM-tree+PSF variant performs the best, achieving 25% of
the heap operations spent by M-tree.

Answering Metric Skyline Queries by PM-tree 35

The second set of experiments focused on the increasing database size. In
Figure 7 the results for Cophir 76 database are presented. The trend of increasing
distance computations is obvious for all MSQ processing methods. However, the
situation is dramatically different for the number of heap operations and the
maximal heap size, where the PM-tree+PSF beats the M-tree by a factor of 17
in heap operations, and by a factor of 7 in the maximal heap size. On the other
hand, PM-tree+PSF+DEF suffers from a high number of heap operations.

100 200 300 400 500 600 700 800 900

0

 2

0
0

4
0

0

 6
0

0
8

0
0

1

0
0

0
1

2
0

0
 1

4
0

0
1

6
0

0

CoPhIR_76

DB size (x 1000)

n
u

m
b

e
r

o
f

d
is

ta
n

c
e

 c
o

m
p

u
ta

ti
o

n
s
 (

x
 1

0
0

0
)

M-tree
PM-tree
PM-tree+PSF
PM-tree+PSF+DEF

100 200 300 400 500 600 700 800 900

0

 1
0

0
2

0
0

 3
0

0
4

0
0

 5
0

0
6

0
0

 7
0

0
CoPhIR_76

DB size (x 1000)

m
a

x
im

a
l
h

e
a

p
 s

iz
e

 (
x
 1

0
0

0
)

M-tree
PM-tree
PM-tree+PSF+DEF
PM-tree+PSF

100 200 300 400 500 600 700 800 900

0
5

1
0

1
5

CoPhIR_76

DB size (x 1000)

n
u

m
b

e
r

o
f

h
e

a
p

 o
p

e
ra

ti
o

n
s
 (

x
 1

 0
0

0
 0

0
0

)

PM-tree+PSF+DEF
M-tree
PM-tree
PM-tree+PSF

Fig. 7. Increasing size of Cophir 76 database: (a) Distance computations (b) Maximal
heap size (c) Heap operations

In the third set of experiments, the results for increasing number of query ex-
amples used in metric skyline queries are presented on the Cophir 12 database,
see Figure 8. Because the number of skyline objects grows substantially with
the increasing number of query examples (retrieving 50, 400, 1750, 4570 skyline
objects for 2-, 3-, 4-, and 5-example MSQs), the overall MSQ costs grow substan-
tially as well. Nevertheless, the PM-tree MSQ processing is still much cheaper
than the M-tree in the heap size and operations, even for 5 query examples.
However, note that for 5 query examples the distance computations of all the
methods come close to the costs of simple sequential search.

Fig. 8. Increasing number of query examples: (a) Distance computations (b) Maximal
heap size (c) Heap operations

36 Tomáš Skopal, Jakub Lokoč

Although the I/O costs do not represent a dominant performance compo-
nent in similarity search1, in the last experiment we present the I/O costs as a
supplementary result (CoPhIR 12, 2 query examples). In particular, in Figure
9a we give the numbers of logical seeks2 spent by skyline processing (the seek
operation is the most expensive one when fetching a page/PM-tree node from
the disk). The PM-tree based MSQ processing spent just 64% of seek operations
required by the M-tree. As for the distance computation costs, also the I/O costs
were decreasing with increasing number of pivots.

Fig. 9. Increasing number of pivots: (a) I/O costs (b) I/O costs vs. distance computa-
tions. (c) Increasing size of (P)M-tree nodes.

In Figure 9b the I/O costs vs. computation costs are shown. As in the first
chart, the pairs 〈I/O costs, distance computations〉 were obtained for different
numbers of pivots employed by PM-tree. Since the (P)M-tree indices consisted of
79,584 nodes, note that the I/O costs correspond to fetching 55% of all the index
nodes for M-tree and 35% for PM-tree (1000 pivots). Also note there is linear
correlation between the distance computations and I/O costs. 55%. Finally, the
Figure 9c shows the performance of (P)M-tree depending on the node size.

4.4 Summary

The experimentation with M-tree and PM-tree based metric skyline processing
has shown that the PM-tree outperforms the M-tree implementation up to 2
times in the number of distance computations, almost 20 times in the number
of heap operations and the maximal heap size, and almost 2 times in the I/O
costs. The results for maximal heap size are exceptionally important, because a
large size of the heap (which is a main-memory structure) would prevent from
processing of metric skyline queries on very large databases.

5 Conclusions

In this paper we have proposed a PM-tree based implementation of metric skyline
query, a recently proposed multi-example query concept suitable for advanced
1 A single distance computation is generally supposed to be much more expensive than

a single I/O operation.
2 We did not consider any node caching in this experiment.

Answering Metric Skyline Queries by PM-tree 37

similarity search in multimedia databases. We have shown that the PM-tree
based implementation of metric skylines significantly outperforms the existing
M-tree based implementation in all observed costs – the time, space, and I/O
costs.

Acknowledgments. This research was supported by Czech Science Foundation
(GAČR) Project 201/09/0683 and by institutional research plan MSM0021620838.

References

1. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceed-
ings of the 17th International Conference on Data Engineering, pages 421–430,
Washington, DC, USA, 2001. IEEE Computer Society.

2. E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, 2001.

3. L. Chen and X. Lian. Dynamic skyline queries in metric spaces. In EDBT ’08:
Proceedings of the 11th international conference on Extending database technology,
pages 333–343, New York, NY, USA, 2008. ACM.

4. L. Chen and X. Lian. Efficient processing of metric skyline queries. IEEE Trans.
on Knowl. and Data Eng., 21(3):351–365, 2009.

5. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In VLDB’97, pages 426–435, 1997.

6. R. Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci., 58(1):83–99, 1999.

7. F. Falchi, C. Lucchese, R. Perego, and F. Rabitti. CoPhIR: COntent-based Photo
Image Retrieval [http://cophir.isti.cnr.it/CoPhIR.pdf], 2008.

8. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In B. Yor-
mark, editor, SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts,
June 18-21, 1984, pages 47–57. ACM Press, 1984.

9. G. Hjaltason and H. Samet. Incremental similarity search in multimedia databases,
computer science dept. tr-4199, univ. of maryland, college park, 2000.

10. D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images using the
hausdorff distance. IEEE Patt. Anal. and Mach. Intell., 15(9):850–863, 1993.

11. H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

12. T. Skopal. Pivoting M-tree: A Metric Access Method for Efficient Similarity
Search. In Proceedings of the 4th annual workshop DATESO, Desná, Czech Re-
public, ISBN 80-248-0457-3, also available at CEUR, Volume 98, ISSN 1613-0073,
http://www.ceur-ws.org/Vol-98, pages 21–31, 2004.

13. T. Skopal. Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Transactions on Database Systems, 32(4):1–46, 2007.

14. T. Skopal, J. Pokorný, and V. Snášel. Nearest Neighbours Search using the PM-
tree. In DASFAA ’05, Beijing, China, pages 803–815. LNCS 3453, Springer, 2005.

15. Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary dimensionality.
In VLDB ’04: Proceedings of the Thirtieth international conference on Very large
data bases, pages 744–755. VLDB Endowment, 2004.

16. P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach (Advances in Database Systems). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

A Framework for Efficient Design, Maintaining,
and Evolution of a System of XML Applications?

Martin Nečaský and Irena Mlýnková

Department of Software Engineering, Charles University in Prague, Czech Republic
{necasky,mlynkova}@ksi.mff.cuni.cz

A Framework for Efficient Design, Maintaining,
and Evolution of a System of XML Applications?

Martin Nečaský, Irena Mlýnková

Department of Software Engineering, Charles University in Prague, Czech Republic
{necasky,mlynkova}@ksi.mff.cuni.cz

Abstract. The today’s applications usually form a system of sub-appli-
cations, each being responsible for a particular functionality. Hence, the
design and maintenance of such a complex system is not a simple task. In
addition, the user requirements can change and the affected parts need
to be identified and evolved. Similarly, new components or even whole
system may need to be integrated.
In this paper we describe a framework that enables one to face the de-
scribed issues. For this purpose we exploit verified technologies, such as
conceptual modeling, data semantics, matching algorithms etc. Using a
set of examples we show that our approach enables one to design, main-
tain, and evolve a system of applications efficiently and precisely. We
depict the features on an XML system represented by a set of web ser-
vices that exchange XML data. However, the concepts are general and
can easily be extended for any kind of data format.

1 Introduction

The current applications are often based on two concepts. First, they do not
form a monolithic piece of software, but they are usually composed of a set of
simpler sub-applications, each being responsible for a particular execution part.
Second, such sub-applications usually exploit a set of web technologies so that
they can be distributed and communicate with each other. Hence, we usually
speak of a complex system of applications which involves a huge amount of data
formats being exchanged and processed by its components.

Considering such a complex system, there occurs a number of related issues.
First, the data formats need to be designed. With regard to the existing data
design techniques we need a kind of conceptual model, general enough to cover
any of the formats. Second, we need to design the formats correctly, so that they
cover all the required information, but avoid redundancies. Hence, we cannot
design the particular formats independently. And, last but not least, when the
system is designed and implemented, there occurs the problem of evolution.
The requirements of users can change which can lead to changes in several data
formats and consequently the respective components that process and exchange

? Supported by the Czech Science Foundation (GAČR), grants no. 201/09/P364 and
P202/10/0573.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 38–49, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

A Framework for Efficient Design, Maintaining, and Evolution . . . 39

the data. It can also influence storage and manipulation strategies of the data
formats. And, similarly, new applications may need to be incorporated, or even
whole systems may be mutually integrated.

The aim of this paper is to describe a framework that faces the described is-
sues and identifies related problems that have not been solved yet by researchers.
The proposed framework covers the whole life cycle of a system of applications
from design and maintenance to evolution. Its main advantages are as follows:

– It involves a conceptual level of both the data and the business processes
which enable one to describe the user requirements easily and precisely.

– It creates and preserves the relations between applications and their data.
Hence, any evolution change can be propagated to all affected components.

– The system is open, thus new applications can be semi-automatically incor-
porated or it can be integrated with a whole other system.

– The additional information are exploited in various parts of the system, such
as storage strategies or matching of components during integration.

Probably the most common example of the described system is represented
by the principle of Service Oriented Architecture (SOA) and its most common
implementation – web services [16]. A web service (WS) is a software system
designed to support machine-to-machine interaction over the Internet using mes-
sage exchanging. Most of the functionality of a WS is based on XML [8] – its
interface is described in WSDL [11], the data is exchanged using SOAP [9] mes-
sages, etc. For simplicity we will consider only such type of system – so-called
XML system of applications that exchange and process data in XML format.
However, the framework can easily be extended for various other formats.

The paper is structured as follows: Section 2 provides a running example of
an XML system. Section 3 describes basic decomposition of an XML system and
Section 4 describes advanced components that form the framework. Section 5
provides conclusions.

2 Running Example

Let us consider a real-life purchasing application, in particular a simple business
process of purchasing goods. The diagram of the business process modeled in
BPMN [13] is depicted in Figure 1. The process starts with receiving a purchase
order from a customer. Firstly, the trader checks the provided credit card details
and rejects the purchase when the check fails. Otherwise, the trader arranges
delivery of the purchased goods and sends an invoice back to the customer.

The business process is implemented by a publicly available WS PurchaseWS
depicted in Figure 2. The WS provides an operation ProcessPurchase that re-
ceives a purchase order as the input from a customer. When a customer’s credit
card cannot be validated the WS sends a rejection message back to the cus-
tomer. Otherwise, the customer receives an invoice with the delivery details as
a response from the WS.

40 Martin Nečaský, Irena Mlýnková

Receive Purchase

Check Credit

Card
Credit Card O.K.

Reject

Purchase

Arrange

Delivery
Send Invoice

Fig. 1. Purchasing Business Process Dia-
gram

PurchaseWS

ProcessPurchase

CreditCardValidatorWS

ValidateCard

UPCShipmentWS

GetShipmentRates

ProcessShipment

FedExDeliveryWS

GetUSRates

ArrangeDelivery

GetWorldRates

Customer

Fig. 2. PurchaseWS WS

Figure 2 also depicts third-party WSs exploited in the implementation of
PurchaseWS. CreditCardValidator WS is exploited for validating credit cards
of customers. WSs of various logistics companies are exploited. To arrange a
shipment, shipment offers are retrieved from these services and the cheapest is
selected. The figure depicts WSs of the UPS1 and FedEx2 companies.

3 Basic System Decomposition

The full architecture of our framework is depicted in Figure 3. In this section
we describe so-called run-time parts, i.e. parts that form the run time of an
XML system. In the following section we describe extensions we need to design,
maintain and evolve such XML system efficiently.

The run-time parts of the system are XML Schema part, Web Services part,
Database part, and Semantics part. We denote them XS, WS, DB, and SEMAN-
TICS, respectively.

The XS component is a mandatory part of each XML system. It covers
XML schemas that specify XML formats applied in the system and integrity
constraints that enhance XML schemas with advanced conditions that cannot
be expressed with XML schema languages. XML schemas can be expressed in
languages such as, e.g., XML Schema [5, 6], or Relax NG [25]; for expressing
XML constraints, XML pattern languages, e.g. Schematron [19], can be applied.

Example 1. The running example in Section 2 exploits several XML formats.
For example, there is a format for XML messages with purchase orders sent by
customers to PurchaseWS or two formats for XML messages with delivery infor-
mation sent by PurchaseWS to UPCShipmentWS and FedExDeliveryWS. There
are also advanced integrity constraints – for example, an integrity constraint
specifying that “check sum equals to the sum of prices of individual items”.

1 http://www.ups.com/
2 http://fedex.com/

A Framework for Efficient Design, Maintaining, and Evolution . . . 41

Figure 2: Run-time and Design-time Components

1. Complex design

• Motivation:
o XML system can comprise many components such as XML schemas,

WSDL schemas, database schemas, integration scripts etc. However,
these components do not provide an overall picture of the whole data
domain and business processes as they implement different viewpoints
of various participants (e.g. users, other systems, standardization
efforts, etc.).

• Solution:
o Techniques for designing an overall conceptual model of the data

domain and business processes will be developed. It is represented by
the two desing-phase parts of the XML system architecture depicted in
Figure 2:

 DM (Domain Model) part covers a conceptual model of the data
domain. It comprises

• PIM (Platform-Independent Model) which contains
conceptual diagrams of the data domain. PIM models
important aspects of the data domain (i.e. concepts and
relationships) independently of its representation at logical
levels, i.e. XML and DB. Diagrams can be expressed with
existing UML class diagrams.

• Integrity constraints extend PIM with advanced integrity
constraints that can not be expressed with the PIM
modeling language. Existing OCL (Object Constraints
Language) can be exploited.

 BPM (Business Process Model) part covers a conceptual model
of the business processes. It comprises

Fig. 3. System Architecture

The WS part covers business processes implemented by the XML system.
A WS is comprehended as a standalone software component that implements a
business process. Data mediators can then implement transformation of XML
messages between WSs, and orchestration/choreography allows for composition
of individual WSs into complex services ones. Transformations can be specified
as XSLT [1] scripts. To describe orchestration/choreography, languages such as
WSBPEL [10] can be applied.

Example 2. In our sample system we specify WS interfaces as WSDL descrip-
tions. Moreover, PurchaseWS exploits the two external UPCShipmentWS and
FedExDeliveryWS and also two trader’s internal WSs InventoryWS and Ac-
countingWS for checking the amount of a particular product on the stock and
issuing invoices, respectively. In other words, PurchaseWS orchestrates these
WSs. Since the input XML formats of both UPCShipmentWS and FedExDeliv-
eryWS differ from the output XML format of PurchaseWS, it is necessary to
incorporate XSLT data mediators that transform the messages respectively.

The DB (Database) part covers databases that persist XML data involved
in the system. The XML documents can be stored centrally in a single database
or distributed across different databases. Native XML databases allow for storing
XML messages in their native form. Object-relational databases require decom-
position of XML messages into object-relational tables.

Example 3. The data in the exchanged XML messages in our sample XML sys-
tem are stored in a relational database. When a purchase order arrives from a
customer, it is shredded into records of relational tables. The same is for other
information, e.g. delivery details, invoices etc. Conversely, because of legal con-
straints, each trader needs to store the invoices from suppliers as they come
instead of converting them to normalized relational tables. Therefore, the trader
exploits a native XML database in this case.

42 Martin Nečaský, Irena Mlýnková

The SEMANTICS part exploits ontologies to express semantics of the
data domain and business processes in a machine-readable way. Domain ontolo-
gies specify semantics of the data domain, e.g., in OWL [3]. Process ontologies
specify semantics of business processes, e.g., in OWL-S [2] or WSMO [7]. This
enables one to exploit various advanced semantic techniques to, e.g., dynami-
cally discover PurchaseWS or mediate other business processes to the business
process implemented by the XML system.

Example 4. For customers equipped with solutions based on the Semantic Web
technologies, a trader can provide additional semantics part of the XML sys-
tem. The trader exploits a standardized BMO3 business ontology to specify the
important concepts, e.g. customer, product, purchase etc., and the purchasing
business process at the semantic level.

When two or more run-time parts are present in the system, we need them
to work together. This internal integration is covered by integration parts called
XML VIEWS, SEMANTIC VIEWS, XML GROUNDING, and WS GROUND-
ING depicted in Figure 3 as double-colored rounded boxes.

XML VIEWS cover integration of the XML and DB parts. They transform
data from its database representation to XML representation and vice versa. An
XML view can be expressed in XML query languages such as SQL/XML [18].

Example 5. In our example we need XML views expressed in SQL/XML to
transform the data stored in the relational database (e.g. purchase orders and
delivery data) to XML formats specified by the XML schemas in the XS part
and vice versa. These views allow to access the data in their various XML rep-
resentations even if it is logically stored in relational tables.

SEMANTIC VIEWS cover integration of SEMANTICS and DB parts.
They transform data from its database representation to the ontological rep-
resentation, e.g. RDF [4] triples, and vice versa. This allows for expressing
the semantics of the data in a machine-readable way and, at the same time,
database-supported semantic reasoning and querying. A SEMANTIC view can
be expressed in an XML query language, such as SQL/XML, as RDF triples can
be represented in XML.

Example 6. Our sample system provides semantics-enabled customers with the
purchase, invoice, and delivery data represented in the ontological representation
conforming to the ontologies from the SEMANTICS part. This is achieved by
semantic views that convert, e.g., purchase order data in relational tables to
RDF triples and vice versa.

XML GROUNDING integrates SEMANTICS and XS parts. It comprises
mutual mappings of XML schemas to domain ontologies and as XSLT scripts
that specify data transformation between XML and ontological representation.
It is similar to SEMANTIC VIEWS part but instead of DB there is the XS part.
3 http://www.bpiresearch.com/Resources/RE_OSSOnt/re_ossont.htm

A Framework for Efficient Design, Maintaining, and Evolution . . . 43

Example 7. When a semantics-enabled customer receives an XML message with
delivery information, (s)he needs to know the semantics of parts of the XML
message, e.g. delivery date, packaging etc., in the terms of the domain ontology.
This is expressed by the XML grounding that provides mapping of parts of the
XML schema for the XML message to the domain ontology.

WS GROUNDING integrates SEMANTICS and WS parts. It enhances
XML GROUNDING by adding mappings of WS operations, orchestration, and
choreography to process ontologies in order to specify semantics of, e.g., in-
puts/outputs of WSs.

Example 8. Similarly to XML grounding, it is necessary to provide mapping of
the WSDL description of PurchaseWS to the process ontology that specifies the
semantics of our purchasing business process.

4 System Extensions

The components described in the previous section (or, in simpler cases, their
various subsets) form the XML system and are present at run time. They need
to be designed, implemented, and maintained. In addition, since an XML system
usually evolves, the components need to be modified or even whole new XML
components need to be integrated. Our framework involves techniques and tools
that enable one to manage the whole life cycle of an XML system in a user-
friendly and effective way.

Complex Design As we have outlined, an XML system involves XML schemas,
WSDL schemas, database schemas, integration scripts etc. They implement dif-
ferent and often limited viewpoints of various participants (i.e. users, other sys-
tems, standardization efforts etc.). Therefore the primary component of the ex-
tended system is a family of conceptual models [27], related integrity constraints
[31], and a complex design tool [12] that supports them. In Figure 3 they are
represented by the two design-phase parts of the architecture – DM and BPM.

The DM (Domain Model) part covers a conceptual model of the data do-
main. It involves platform-independent model (PIM) which provides conceptual
diagrams of the domain and integrity constraints. PIM models important aspects
of the data domain (i.e. concepts and relationships) regardless its representation
at logical levels, e.g. XML or DB, using classical UML [15] class diagrams. In-
tegrity constraints extend PIM with information that cannot be expressed with
the PIM modeling language. For this purpose (OCL) [14] is exploited.

Example 9. Figure 4 depicts a PIM diagram4 of our sample problem domain.
Concepts are expressed as classes, e.g. Customer or Order. Relationships between
concepts are expressed as associations.

4 It was modeled in XCase [12], a modelling tool that implements basic features de-
scribed in this paper.

44 Martin Nečaský, Irena Mlýnková

Fig. 4. DM PIM

Fig. 5. DM PSM

The BPM (Business Process Model) part covers a conceptual model of
the business processes. It involves PIM which provides conceptual diagrams of
the business processes and integrity constraints. PIM models activities, events,
and messages participating in business processes independently of their imple-
mentation in WS part in BPMN [13].

Integrity constraints extend PIM with advanced constraints specific for indi-
vidual WSs (e.g. pre-conditions and post-conditions of activities and events or
constraints on exchanged messages). Again OCL can be applied.

Example 10. A sample business process PIM diagram is depicted in Figure 1.
Each message, e.g. purchase order, credit-card check, invoice etc., specified by
the business process represents part of the data domain. This part is modeled
as a PIM diagram which is part of the whole PIM diagram from Figure 4. For
example, the PIM diagram for invoice messages contains Order, ProductItem,
Product, and Customer classes.

Note that the existing modeling languages [15, 13] consider data modeling and
business-process modeling separately. In our framework we interconnect these
two areas and model them uniformly at PIM level. Hence, PIM gives an overall
picture of the data domain and business processes independently of their imple-
mentation; the interconnection enables one to describe the required applications
more precisely.

We survey methods for conceptual modeling techniques in [26], where we
show that current methods allow modeling XML formats only at the PSM level.
In [27] we introduced a conceptual model for XML that allows for modeling
XML formats also at the PIM level.

Regarding business process modeling, there are languages such as BPMN
[13]. However, we are missing methods for modeling data in current BPM PIM
modeling languages, i.e. methods interconnecting BPM and DM PIMs. These
languages must therefore be further extended. Probably the first step towards
this aim is paper [21], where the authors deal with transformations of BPM to
UML using XSLT.

A Framework for Efficient Design, Maintaining, and Evolution . . . 45

Forward Engineering Manual coding of all components of the XML system
(e.g. XML and WSDL schemas, XSLT scripts, database schemas etc.) consumes
a lot of effort and is error-prone. Hence, our framework is based on a family of
conceptual models [27] and respective technologies. Apart from PIM, it involves
so-called platform-specific model (PSM) represented by the XML PSM integra-
tion part, where each diagram takes part of the PIM diagram(s) and specifies
how it is represented in a particular XML format. The diagram can also be
comprehended as a mapping between PIM and XML schemas. Similarly, our
framework involves techniques for specification of implementation of the busi-
ness processes by WSs. This is represented by the WS PSM integration part and
comprises WS PSM diagrams. Again each diagram specifies implementation of
parts of a business process.5

The translation of PSMs to respective representations is done semi-automati-
cally. In particular it involves translation of:

– XML PSM to XML schemas (DM-to-XS),
– XML PSM to database schemas (DM-to-DB) and XML VIEWS,
– WS PSM to WSDL descriptions, XSLT data mediation scripts, BPEL or-

chestrations, and WS-CDL choreographies (BPM-to-WS), and
– PIM to ontologies (DM&BPM-to-SEMANTICS) and SEMANTIC VIEWS.

Forward engineering is depicted in Figure 3 by white-filled arrows.

Example 11. A sample XML PSM diagram is depicted in Figure 5. It models how
invoices are implemented in XML, i.e. how instances of classes from the DM PIM
diagram in Figure 4, e.g. Order, Customer, or Product, are represented. From
the XML PSM diagram, an XML schema, XML view, and XML grounding for
this particular XML format are derived. Similarly, forward engineering of BPM
PIM to WSs specification can be solved via BPM PSM.

Consequently, the manual coding of WS, XML, DB, and SEMANTICS parts
components is significantly reduced to design of XML PSM and WS PSM di-
agrams which is more user-friendly and natural. The user does not need to
bother with syntactic details, specifics of particular format etc. What is more,
the common PIM diagram also formally interrelates components of WS, XML,
DB, and SEMANTICS run-time parts. Such information is further exploited in
the following sections.

In [26], we also study techniques of translating conceptual diagrams in various
conceptual modeling languages to XML schemas. There are also methods for
translating BPMN diagrams to BPEL scripts [34]. The translation is done only
automatically. However, designers need a possibility to influence the translation
process which is missing in the current literature.

In [29], we study derivation of an optimal native XML database schema from
a set of XML PSM diagrams and their DM PIM diagram. In [33], the authors

5 Note that in the same way the system can be extended with PSM of relational data
(e.g. ER diagrams [32]), classes and objects (e.g. UML [15]), etc.

46 Martin Nečaský, Irena Mlýnková

study methods of derivation of an optimal hybrid database schema for a given
XML schema. These methods should be further extended for deriving a hybrid
database schema for a set of XML PSM diagrams.

Reverse Engineering When a new XML component needs to be incorporated
into the XML system, it is usually necessary to integrate it with other compo-
nents manually. In simple cases it is possible, however in complex situations it can
be a very hard task. For this purpose our framework involves (semi-)automatic
techniques for reverse engineering of:

– XML schemas to XML PSM diagrams
– WS components (i.e. WSDL schemas, BPEL, and WS-CDL scripts) to WS

PSM diagrams
– external domain ontologies to DM PIM, and
– external process ontologies to BPM PIM.

Example 12. Suppose that the trader wants the XML system to support also
managing supplies from the suppliers. The suppliers provide WSs for managing
supplies; however, the interfaces are different. This requires to integrate the
WSDL descriptions and XML schemas of the suppliers with the trader’s XML
system. Instead of doing this manually, we enable one to map the XML schemas
to the DM PIM diagram through XML PSM diagrams (semi-)automatically
derived from the XML schemas. WSDL descriptions can be also mapped in a
similar way to a BPM PIM diagram specifying the supply management business
process from the trader’s point of view. Then, all other components can be
derived automatically using the forward engineering procedures.

Having the (semi-)automatic strategy, we significantly reduce the manual
work when incorporating third-party components, e.g. XML schemas, WSDL
descriptions, or ontologies of standardization organizations, business partners
etc., into an existing XML system.

As we have described in [28] the reverse engineering approach cannot be
purely automatic since in several cases there can be multiple options of a suitable
mapping. However, using verified strategies, such as similarity matching [23],
evaluation of semantics etc., our approach enables one to reduce the options to
reasonable amount. In addition, it even provides several metrics that enable one
to evaluate quality of the options from distinct points of view.

Note that similarly we can support integration of whole XML systems at PIM
level. Again, if a given system does not involve our DM and BPM extensions, they
can be reverse engineered. Then the PIM integration specifications are directly
translated to XSLT data mediators and BPEL business process mediators.

Evolution and Versioning Management As mentioned before, sooner or
later user requirements can change and, hence, the respective data need to be
modified. The problem is that such modifications can affect multiple components
of the system, such as, e.g., XML schemas, WSDL descriptions, database schemas

A Framework for Efficient Design, Maintaining, and Evolution . . . 47

etc. And not only can such modifications be demanding, but, in complex systems,
they can also be very hard to identify.

For the purpose of complex evolution management we exploit the previously
described features described. Similarly to design phase, we assume that most
users express their modifications in PIM since again (s)he does not have to bother
with specific features of particular formats. Such changes are then propagated
to all related run-time parts by exploiting the forward-engineering methods –
we speak about downwards propagation. On the other hand, when a change
needs to be done in a run-time part, it can be propagated to PIM by exploiting
the reverse-engineering methods – we speak about upwards propagation – and
then to all the related system parts again using downward propagation [30].
To perform the respective modifications, our framework involves techniques for
(semi-)automatic derivation of XSLT scripts.

Example 13. In our sample scenario, we may need to represent names of cus-
tomers in purchase orders as a pair first name and surname instead of a single
value name. This requires to modify the XML schema for purchase orders. It
may need to be propagated to the existing XML messages to preserve validity
against the evolved XML schema as well as to the corresponding XML PSM dia-
gram to preserve consistency with the XML schema. However, this also requires
to change the DM PIM diagram or mapping from the XML PSM diagram to
the PIM diagram. When the DM PIM diagram is changed, the change must be
propagated downward to the other XML schemas in the system.

Similarly to the case of reverse engineering, also in case of evolution manage-
ment the key advantage of our approach is reduction of manual work when the
XML system evolves.

As we have studied in [30], the amount of approaches to XML evolution is
surprisingly low and the approaches are trivial. They only deal with separate
aspects, such as propagation of modification of XML schema level to XML doc-
uments or vice versa [22], several papers also deal with modifications of a kind of
abstraction of the XML schema – either visualization [20] or UML diagram [17],
i.e. a kind of PSM. However, none of them views the problem from the point of
view of multiple applications sharing common domain.

Run-Time Support During the run time of the system we need further system
components, such as storage strategies and respective query operations, platform
for running WSs, support for semantic operations etc. All these components can
also benefit from the design-time components and exploit the complex informa-
tion on the whole system at run time.

For example, in most XML systems the XML data that are processed and ex-
changed by its components usually need to be persistently stored and retrieved.
In general, there seems to be no generally optimal storage strategy. Since require-
ments of various XML applications significantly differ, for each type of processing
of XML data the respective appropriate approach should be used [24]. And it is
even often further optimized in a specific way. However, manual optimization of,

48 Martin Nečaský, Irena Mlýnková

e.g., database schemas with respect to the expected data retrieval and manip-
ulation is complicated task. The more information are taken into account, the
better, however the more complicated the search for optimum becomes.

As we have already described, our framework involves complex information
on multiple applications that process the XML data, data mediators, schema
versions etc. Consequently, the respective storage strategies can be found more
precisely and in more broader context of multiple application views. In addition,
they can be adjusted to centralized or distributed architecture.

5 Conclusion

The aim of this paper was a description of a framework that enables one to
simplify, clarify, and streamline the design, maintenance, and evolution of a
complex system of applications. Due to space limitations we have described a
general architecture of an XML system, the most common issues that need to be
solved during its life cycle and, in particular, how they can be simplified using
the described framework, i.e. extension of the system.

Our current work naturally covers the full implementation of the key compo-
nents of the framework. Some of them have already been covered by XCase [12]
which we currently extend with modeling of business processes and storage level.
Our future work will focus mainly on support of non-XML data models such as
ER model, UML, etc. and application of the system in real-world use cases.

References

1. XSL Transformations (XSLT) Version 1.0. W3C, 1999. http://www.w3.org/TR/

xslt.
2. OWL-S: Semantic Markup for Web Services. W3C, 2004. http://www.w3.org/

Submission/OWL-S/.
3. OWL Web Ontology Language. W3C, 2004. http://www.w3.org/TR/

owl-features/.
4. RDF/XML Syntax Specification (Revised). W3C, 2004. http://www.w3.org/TR/

rdf-syntax-grammar/.
5. XML Schema Part 1: Structures (Second Edition). W3C, 2004. http://www.w3.

org/TR/xmlschema-1/.
6. XML Schema Part 2: Datatypes (Second Edition). W3C, 2004. http://www.w3.

org/TR/xmlschema-2/.
7. Web Service Modeling Ontology (WSMO). W3C, 2005. http://www.w3.org/

Submission/WSMO/.
8. Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006. http:

//www.w3.org/XML/.
9. SOAP Version 1.2 Part 0: Primer. W3C, 2007.

http://www.w3.org/TR/soap12-part0/.
10. Web Services Business Process Execution Language (WSBPEL) TC. OASIS, 2007.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
11. Web Services Description Language (WSDL) Version 2.0 Part 0: Primer. W3C,

2007. http://www.w3.org/TR/wsdl20-primer/.

A Framework for Efficient Design, Maintaining, and Evolution . . . 49

12. XCase – A Tool for XML Data Modeling. 2008. http://kocour.ms.mff.cuni.cz/

~necasky/xcase/.
13. Documents Associated with Business Process Modeling Notation (BPMN) 1.2.

OMG, 2009. http://www.omg.org/spec/BPMN/1.2/.
14. Object Constraint Language Specification, version 2.0. OMG, 2009. http://www.

omg.org/technology/documents/formal/ocl.htm.
15. Unified Modeling Language. OMG, 2009. http://www.uml.org/.
16. Web Services Activity. W3C, 2009. http://www.w3.org/2002/ws/.
17. E. Dominguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML Schemas

and Documents Using UML Class Diagrams. In DEXA’05, pages 343–352, Berlin,
Heidelberg, 2005. Springer.

18. ISO/IEC 9075-14:2003. Part 14: XML-Related Specifications (SQL/XML). Int.
Organization for Standardization, 2006.

19. R. Jelliffe. The Schematron – An XML Structure Validation Language using Pat-
terns in Trees. 2001. http://xml.ascc.net/resource/schematron/.

20. M. Klettke. Conceptual XML Schema Evolution – the CoDEX Approach for Design
and Redesign. In BTW Workshops, pages 53–63. Aachen, 2007.

21. O. Macek and K. Richta. The BPM to UML Activity Diagram Transformation
Using XSLT. In DATESO’09, volume 471, pages 119–129, Spindleruv Mlyn, Czech
Republic, 2009. CEUR-WS.

22. M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini. X-Evolution: A System for
XML Schema Evolution and Document Adaptation. In EDBT’06, pages 1143–
1146, Berlin, Heidelberg, 2006. Springer.

23. I. Mlynkova. Similarity of XML Schema Definitions. In DocEng’08, pages 187–190,
2008.

24. I. Mlynkova. Standing on the Shoulders of Ants: Towards More Efficient XML-to-
Relational Mapping Strategies. In XANTEC’08, pages 279–283, Turin, Italy, 2008.
IEEE.

25. M. Murata. RELAX (Regular Language Description for XML). 2002. http:

//www.xml.gr.jp/relax/.
26. M. Necasky. Conceptual Modeling for XML: A Survey. In DATESO’06, volume

176, pages 40––53, Cerna Ricka, Czech Republic, 2006. CEUR-WS.
27. M. Necasky. Conceptual Modeling for XML. IOS Press, Heidelberg, Netherlands,

2008.
28. M. Necasky. Reverse Engineering of XML Schemas to Conceptual Diagrams. In

APCCM’09, pages 117––128, Wellington, New Zealand, 2009. CRPIT.
29. M. Necasky and T. Knap. Reconstruction of Normalized XML Documents. In

Innovations’08, pages 213––217, Al Ain, UAE, 2008. IEEE.
30. M. Necasky and I. Mlynkova. On Different Perspectives of XML Schema Evolution.

In FlexDBIST’09, Linz, Austria, 2009. IEEE.
31. M. Necasky and K. Opocenska. Designing and Maintaining XML Integrity Con-

straints. In MoViX’09, Linz, Austria, 2009. IEEE.
32. Ch. Peter. Entity-Relationship Modeling: Historical Events, Future Trends, and

Lessons Learned. pages 296–310, 2002.
33. L. Stromback, M. Asberg, and D. Hall. HShreX — a Tool for Design and Evaluation

of Hybrid XML Storage. In FlexDBIST’09, Linz, Austria, 2009. IEEE.
34. S. A. White. Using BPMN to Model a BPEL Process. IBM Corp., USA, 2005.

http://bpmn.org/Documents/Mappingf.

Reconstructing Social Networks from Emails

Marcel Kvassay, Michal Laclav́ık, and Štefan Dlugolinský

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava 45, Slovak Republic

marcel.kvassay@savba.sk

Reconstructing Social Networks from Emails

Marcel Kvassay1, Michal Laclavík1, Štefan Dlugolinský1

1 Institute of Informatics, Slovak Academy of Sciences, Dúbravská cesta 9,
845 07 Bratislava 45, Slovak Republic

marcel.kvassay@savba.sk

Abstract. The article provides a brief overview of Social Network Analysis
(SNA) and its potential for exploiting the wealth of information buried in the
email archives of business and private entities. Within the scope of the
COMMIUS1 project, we built a proof-of-concept prototype in Java, which used
the spreading activation algorithm to reconstruct various aspects of multidimen-
sional social network from emails. Two different variants of the spreading acti-
vation algorithm are discussed and compared.

1 Introduction

1.1 Social Network Analysis

History. The development of Social Network Analysis (SNA) is instructively mapped
out by Freeman in [1] and, more briefly, by Fararo in [2]. Fig. 1 depicts the area at the
intersection of sociology and psychology where SNA emerged as an alternative to
traditional sociology. This area can be broadly classified as social psychology (SP),
though it overlaps with other fields, such as anthropology or ethnology.

Psychology typically focuses on the individual. It studies mental functions – per-
ception, cognition, attention, emotion, motivation, etc. – and their role in individual
and social behavior. Sociology, in contrast, focuses on collective formations and ana-
lyzes human social activity starting from the micro level (agency and interaction) to
the macro level (systems and social structures). In the area where sociology overlaps
with psychology, the focus is on small groups. According to Wikipedia,2 there are
differences between social psychology as practised by psychologists (SPp), and by
sociologists (SPs). Psychologists retain their individual focus and study how the
thoughts, feelings, and behaviors of individuals are influenced by other members of
the group. Sociologists focus more on the group itself and study group dynamics,
crowd-phenomena, etc., often in the context of larger social structures (race, class,
gender). Based on this distinction, the origins of SNA can be traced specifically to
social psychology as practiced by sociologists and anthropologists (SPs).

1 http://www.commius.eu/
2 http://en.wikipedia.org/wiki/Social_psychology

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 50–59, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Reconstructing Social Networks from Emails 51

Early forms of SNA, such as sociometry, appeared in the 1930s but for various rea-
sons did not catch on. SNA was eventually accepted as a separate discipline in the
1970s, and has been on the rise ever since. With the spread of internet and cheap
computing power, it penetrated mainstream sociology to such an extent that Wikipe-
dia3 now considers it “a key technique in modern sociology.”

Fig. 1. SNA originated in the 1930s at the intersection of sociology and psychology, in the area
shared by social psychology (SP), anthropology and ethnology. With the spread of internet and
cheap computing power, it entered mainstream sociology (SNA+)

According to Freeman [1], SNA has four defining features:

1. Structural intuition (that patterning of social ties influences actors);
2. Systematic collection of empirical data;
3. Use of rigorous mathematical and computational models;
4. Graphic imagery.

Methods. To the use of statistics, which had a long tradition in sociology, SNA added
new methods grounded in algebra and graph theory. SNA also enriched these discip-
lines with new concepts and techniques, such as block-modeling or the notions of
bridge, centrality, structural balance, etc. More recently the focus has shifted to com-
putational sociology and multi-agent simulations of social phenomena.

1.2 Social Networks in Emails

Email has become the most widespread Internet application. It is a tool supporting not
only communication but also cooperation, task management, archiving, or information
and knowledge management. Furthermore Email is a source of information on person-
al, enterprise or community network of an individual or an organization. Email com-
munication analysis allows extraction of social networks with further connection to
people, organizations, locations, topics or time.

Social Networks included in email archives are becoming increasingly valuable as-
sets in organizations, enterprises and communities, though to date they have been little
explored. While social networks in social network site such as Facebook are owned by

3 http://en.wikipedia.org/wiki/Social_network_analysis

52 Marcel Kvassay, Michal Laclav́ık, Štefan Dlugolinský

third parties, email social network data are owned by individual or organization in-
cluding many useful connections hidden in emails. On personal archives, Xobni4 ex-
ploits social networks to help the user manage contacts and attachments, but at the
enterprise or community level, social networks can be exploited to improve email
search, manage customers and suppliers, prioritise emails or improve inference me-
chanisms when connected with other detected semantic information from the email.

Social networks within email communication have been studied to some extent. For
example, communication on the Apache Web Server mailing lists and its relation to
CVS activity was studied in [6]. This work also introduces the problem of identifying
email users’ aliases. Extracting social networks and contact information from email
and the Web and combining this information is discussed in [7]. Similarly, new email
clients (e.g. Postbox) or plug-ins (Xobni) try to connect email social networks with
web social networks like LinkedIn or Facebook. We have also performed some expe-
riments on extraction of social networks from large email archives and network trans-
formations using a semantic model [4]. Another research effort [8] exploits social
networks to identify relations and tests proposed approaches on the Enron corpus.

To conclude, there is much research work done on social networks in the area of
web social network applications, but email social networks are a bit different since in
the email you can discover the level of interactions (number of messages exchanged,
time, relation to content and possibly discovered semantics), and the influence of these
differences on better information and knowledge management still needs to be ex-
plored. We would like to use similar approach as IBM Galaxy [10] in Nepomuk5
project, where concept of multidimensional social network was introduced. In this
paper we show initial results of exploiting email social network in order to support
better understanding of email content as well as allowing applications such as partner
or supplier search within organization or community.

1.3 COMMIUS6 project

COMMIUS project is part of the 7th Framework Programme of the European Com-
mission. Its acronym stands for “Community-based Interoperability Utility for Small
and Medium Enterprises.” The consortium comprises partners from Austria, Germany,
Greece, Great Britain, Italy, Slovakia and Spain. Their objective is to provide SMEs
(Small and Medium Enterprises) with “a zero, or very low-cost, entry into interopera-
bility, based on non-proprietary protocols.” To this end, a flexible architecture based
on the open-source software was designed and implemented in Java.

The COMMIUS system is aimed primarily at companies that already conduct part
of their business through email, i.e. send and receive orders, invoices, questionnaires,
forms, etc. These documents are often manually retyped so as to enter them in the
company’s order-management or accounting system. Such companies would directly
benefit from COMMIUS, since it is designed to automate these tasks. COMMIUS

4 http://www.xobni.com/
5 http://nepomuk.semanticdesktop.org/
6 http://www.commius.eu/

Reconstructing Social Networks from Emails 53

scans the incoming emails, recognizes certain entities and documents (suppliers, cus-
tomers, orders, invoices, telephone numbers, etc.), and proposes appropriate actions to
the user. In case of an incoming order, for instance, the appropriate actions could be to
check whether the requested items can actually be supplied, to send a confirmation to
the customer, or to invoice and ship the order. These recommendations are presented
to the user as HTML links that COMMIUS inserts into each incoming email. The user
is then free to accept the recommendation (by clicking on the link) or proceed diffe-
rently. A more detailed description of COMMIUS can be found in [3] and [4].

Social Networks in COMMIUS. The core of COMMIUS functionality deals with the
business interoperability: detection of orders, invoices, payments, etc. in the incoming
emails, and their semi-automated inclusion in the company’s order-management and
accounting system. Social network functionality is an add-on to this core. Its main
purpose is to smoothen the process of COMMIUS adoption by new users, for example
by pre-populating their product, customer and supplier databases based on the infor-
mation extracted from their emails. On this basis, more advanced functions can be
built, e.g. search for potential business partners.

Integration with the COMMIUS core. At the moment of installing COMMIUS, the
user's email archives will be processed and the results stored in the form of multidi-
mensional social network graph. After the installation, each incoming email will be
added to this graph. Social network queries will search in the graph so that users get
response in reasonable time. It should be noted that social network functions provide
probabilistic results and would be offered to the user as recommendations only.

2 Implementation

We implemented our “social network extractor” in Java on top of the open-source
graphical library JUNG.7 The novelty of our approach is in the application of the
spreading activation algorithm to two principal tasks:

1. reconstructing the social network from emails;
2. efficiently searching the social network.

The prototype implementation described below is a work in progress. So far only the
initial version of the prototype has been tested on the first type of task; details are
provided in section 3. Evaluation.

2.1 Initial Version: Simple Cumulative Scorer

In the initial version, the information extraction module (IE) passes on a collection of
strings (objects) matched by regular expressions. The strings acquire a “type” accord-
ing to the regular expression that matched them. In this way, they are categorized as
email addresses, personal names, names of organizations, telephone numbers, etc. The

7 http://jung.sourceforge.net/

54 Marcel Kvassay, Michal Laclav́ık, Štefan Dlugolinský

email message itself is represented by a “message ID” object to which the other ob-
jects are connected in a star-like fashion. If the same string is found in several messag-
es, it is connected to all of them. If the same string is found multiple times in the same
message, it has multiple links to that particular message ID, which is our way of re-
cording the strength of the bond. The resulting network graph can be represented as a
three-tier structure or tripartite graph (Fig. 2).

Fig. 2. Spread of activation as implemented in the initial version of the prototype. The activa-
tion starts from the left by assigning the initial activation value (val=1) to one attribute instance
in Tier 1. In the next step, this initial value flows towards Tier 2 via the four red-colored links.
There it accumulates in the three messages in which this attribute instance was found. One of
them is connected via the double parallel link (which means it contained two occurrences of
this attribute instance), so it accumulates a higher value (val=2) than the other two messages. In
the final step, the activation values flow separately from each activated message (with val>0)
towards Tier 3, where they further accumulate in the primary entities found in these messages.
The primary entity with the highest accumulated value (val=3) is declared the “owner” of this
attribute instance. The whole process is repeated for all the attribute instances in Tier 1

Our Simple Cumulative Scorer is inspired by the spreading activation algorithm in the
sense that it separately “activates” each attribute instance with a uniform value of 1
and cumulatively spreads this activation (in the breadth-first manner) via the message
IDs to the primary entities that will “own” the attribute. Each node can only fire once.
It is an extremely simple implementation – we omitted such features of the standard
spreading activation algorithm as attenuation, activation threshold or limit on the max-
imum activated value –nevertheless it allowed us to establish the utility of spreading
activation in social networks.

Reconstructing Social Networks from Emails 55

In the three-tier structure depicted on Fig. 2, the middle tier (message IDs) links the
attributes in Tier 1 to their “primary entities” in Tier 3. In general, the “primary enti-
ty” can be any of the objects identified by the Information Extractor (IE) if it can
“own” (or be composed of) some other objects (attributes) likewise identified by the
IE. In this sense, the “date” as a complex data type can be the primary entity with
respect to year, month and day of which it is composed (provided the IE identifies
these as separate objects), but it can itself be the attribute of a more complex data
type, such as “event,” “conference,” etc. The number of such scenarios is limited only
by the capabilities of the Information Extractor. In our case – since we are trying to
reconstruct the social network – the primary entities are persons and organizations
represented either by their email addresses or by their proper names. The Information
Extractor collects both the email addresses and proper names from all the parts of the
email message (the headers as well as the body). For our test task, we have chosen the
telephone numbers as the sample attribute that we wish to assign correctly to persons
and organizations.

Fig. 3. Hierarchical graph of objects extracted by the enhanced information extractor (IE) from
one email. Nodes representing sentences, paragraphs and blocks of the message are omitted.
Graph was built from our personal email. Due to privacy reasons we cannot show the graph
built from the enterprise emails of our Commius partners

56 Marcel Kvassay, Michal Laclav́ık, Štefan Dlugolinský

2.2 Cumulative Edge Scorer with Attenuation

The improved version of the prototype relies on the enhanced output from the infor-
mation extractor (IE). There are two major improvements:

1. IE produces a hierarchical tree of complex objects as shown on Fig. 3;
2. Objects are not linked directly to message IDs, but to the nodes representing

the sentences, paragraphs and blocks of the message in which they were
found. In this way the information about the physical proximity of the objects
in the original email is preserved for further analysis as shown on Fig. 4.

In this richer and deeper tree-like structure, it makes sense to use a more sophisticated
variant of spreading activation with attenuation and activation threshold. The structure
can still be visualized as a multipartite graph, but the objects of each data type now
require a separate partition (Fig. 4). This applies to candidate attributes as well as to
primary entities. When partitioned in this way, the objects in each partition (i.e. the
objects of the same data type) still have no connections among themselves, only to
objects in other partitions, which is advantageous from the point of view of computa-
tional complexity.

Fig. 4. A more complex variant of spreading activation in a multipartite graph. Activation again
starts at one attribute instance (phone number) indicated by the red arrow (center left) and
flows towards candidate primary entities (email IDs) by a variety of ways. Since the activation
gets attenuated each time it passes through an edge, the shortest path (indicated in red) will
carry over the greatest increment. But the longer paths (such as those indicated in purple and
blue) can be so numerous that – depending on the value of attenuation and other parameters –
their accumulated contribution ultimately prevails

Reconstructing Social Networks from Emails 57

Even in the enhanced version of our prototype, the spreading activation always starts
from a single node. This allowed us to keep the simple and elegant breadth-first va-
riant of the algorithm, in which each node can only fire once. Applications that start
the initial activation from more than one node may need more sophisticated imple-
mentation of spreading activation.

3 Evaluation

We created a test email archive consisting of 28 representative sample messages sup-
plied by our partners in COMMIUS. We then run the prototype with the task to assign
telephone numbers to people and organizations (represented by their proper names)
that were found in the emails.

Though our primary goal was to evaluate the spreading activation algorithm, we
could not completely insulate it from the effects caused by the Information Extractor.
These are seen primarily in the figures for the recall. Out of 17 unique relevant tele-
phone numbers in the test emails, the IE identified 13. These 13 numbers were then
passed on to the spreading activation algorithm. As can be seen from Table 1, the
initial version of the spreading activation algorithm correctly assigned 8 of them,
which resulted in the precision of 61.5% and the recall of 47%.

Table 1. Quantitative evaluation of the initial version of the spreading activation algorithm

Total
relevant

Total
found

Correctly
assigned

Wrongly
assigned

Recall
[%]

Precision
[%]

17 13 8 5 47 61.5

At present, we are still in the early stages of experimenting with the attenuated variant
of the spreading activation. The first tentative results that we obtained are presented in
Table 2.

Table 2. Quantitative evaluation of the attenuated variant of spreading activation

Total
relevant

Total
found

Correctly
assigned

Wrongly
assigned

Recall
[%]

Precision
[%]

17 13 10 3 58.8 76.9

As expected, the enhanced version of the prototype gave significantly better results
(the precision of 76.9% and the recall of 58.8%), though we still need to investigate
the remaining problems. Similarity in the tabular way of presenting the data actually
masks deep differences between the two implementations.

In the initial version, the Information Extractor identified 32 candidate names of
persons and organizations against which the phone numbers had to be matched. The
candidate names were found purely by matching against regular expressions.

58 Marcel Kvassay, Michal Laclav́ık, Štefan Dlugolinský

In the next version, it was decided to enhance the capabilities of the Information
Extractor by adding gazetteers. Regular expressions were adapted so as to increase the
recall and return a much larger number of candidate names, which would be subse-
quently filtered by the gazetteers. However, at the time of our experiment the gazet-
teers were not yet ready, so the enhanced version of the prototype had to match the
phone numbers against a much larger set of 152 candidate names. That it still outper-
formed the initial version is therefore doubly significant and promising.

Moreover, the 3 phone numbers that were wrongly assigned had very low frequen-
cies (one or two occurrences in the test corpus), so the basic assumptions of the algo-
rithm were not met. Nevertheless, our initial experimentation with the prototypes was
very useful and provided us with important hints for future work, which we discuss in
the next section.

4 Conclusions and Future Work

This article is a report of a work in progress, and our experimentation with the proto-
types still continues. The most obvious need is to further test the enhanced prototype
on a larger set of representative emails. Here the main challenge is to get access to
relevant and representative email sets. Though the email correspondence grows at an
accelerating rate, we have learned that not all emails were created equal. They fall into
distinct groups which differ significantly with respect to the ways and kinds of infor-
mation that can be mined from them. Each application needs to be tested on the emails
that are representative of the area in which it will be actually deployed.

The second lesson was that there were several alternative ways in which the Infor-
mation Extractor could present the data extracted from the emails, and each had its
pros and cons. There is a scope for deeper theoretical analysis here – either to find a
general “canonical” structure suitable for most purposes or, alternatively, an easy way
of transforming the data from one form to another depending on the task.

In general, graph and data transformations may be necessary in order to filter out
the irrelevant information. Certain algorithms may require it for correct functioning; in
others it will help to reduce the complexity of computation.

The “Social Network Extractor” component that we developed is able to process
either mailboxes in mbox format or directories with email (.eml) messages, and thus
extract multidimensional social network information contained in the email archive. In
such a graph or network it is possible to see and exploit the links among objects such
as people, time, email addresses, subjects, URLs, contact details or recipients.

The preliminary results of the extraction of social networks from email archives
show that it is possible to deliver Xobni-like functionality in the enterprise or organi-
zational context. Our approach is based on the concept of spreading activation similar
to IBM Galaxy [10].

We have shown inferring relations between people and phone numbers on a small
set of emails using a simple algorithm. The success rate (precision) of the experiment
is 76.9%. In future, we would like to infer the relations such as those between custom-

Reconstructing Social Networks from Emails 59

ers and services, suppliers, products and transactions, organizations and people,
people and address details, and others.

The extracted graph data from the email archives together with a well defined and
tuned spreading activation algorithm can deliver the data needed for the adaptation of
Commius or other enterprise systems. Such data can also be used to fill in the enter-
prise system database upon installation and thus help it to offer full functionality from
the beginning. For example, we can populate a system database with a list of potential
suppliers, organizations, contacts and their expertise.

Acknowledgements

This work is partially supported by projects Commius FP7-213876, APVV DO7RP-
0005-08, AIIA APVV-0216-07, VEGA 2/0184/10 and VEGA 2/0211/09. We would
also like to thank the anonymous reviewers, based on whose comments we have sig-
nificantly reworked and enhanced the paper.

References

1. Freeman, L.: The Development of Social Network Analysis. Empirical Press, Vancouver
(2006) (URL: http://aris.ss.uci.edu/~lin/book.pdf)

2. Fararo, T.J.: “Theoretical Sociology in the 20th Century.” Journal of Social Structure 2.
(2001) (URL: http://www.cmu.edu/joss/content/articles/volume2/Fararo.html)

3. Laclavík, M., Šeleng, M., Gatial, E., Hluchý, L.: Future email services and applications. In:
CEUR-WS: Proceedings of the poster and demonstration paper track of the 1st Future Inter-
net Symposium (FIS´08), Vol. 399. Telecon Res. Center, Vienna (2008) 33-35. ISSN 1613-
0073. (URL: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-399).

4. Laclavík, M., Šeleng, M., Ciglan, M., Hluchý, L.: Supporting Collaboration by Large Scale
Email Analysis. In: Cracow´08 Grid Workshop: Proceedings. Academic Computer Centre
CYFRONET AGH, Kraków (2009) 382-387. ISBN 978-83-61433-00-2

5. Balzert, S., Burkhart, T., Kalaboukas, K., Carpenter, M., Laclavik, M., Marin, C., Mehand-
jiev, N., Sonnhalter, K., Ziemann, J.: Appendix to D2.1.2: State of the Art in Interoperabili-
ty Technology, Commius project deliverable (2009)

6. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining Email Social
Networks. In: MSR ’06: Proceedings of the 2006 International Workshop on Mining Soft-
ware Repositories. ACM, New York (2006) 137–143.

7. Culotta, A., Bekkerman, R., McCallum, A.: Extracting Social Networks and Contact In-
formation from Email and the Web. In: CEAS ’04: Proceedings of the First Conference on
Email and Anti-Spam, 2004. http://www.ceas.cc/papers-2004/176.pdf

8. Diehl, C. P., Namata, G., Getoor, L.: Relationship Identification for Social Network Dis-
covery. In: The AAAI 2008 Workshop on Enhanced Messaging (2008)

10. Judge, J., Sogrin, M., Troussov, A.: Galaxy: IBM Ontological Network Miner. In: Proceed-
ings of the 1st Conference on Social Semantic Web, Volume P-113 of Lecture Notes in In-
formatics (LNI) series (ISSN 16175468, ISBN 9783-88579207-9). (2007)

Efficient Implementation of XPath Processor on
Multi-Core CPUs

Martin Krulǐs and Jakub Yaghob

Department of Software Engineering
Faculty of Mathematics and Physics

Charles University in Prague
Malostranské nám. 25, Prague, Czech Republic

{krulis, yaghob}@ksi.mff.cuni.cz

Efficient Implementation of XPath Processor on
Multi-Core CPUs

Martin Krulǐs, Jakub Yaghob

Department of Software Engineering
Faculty of Mathematics and Physics

Charles University in Prague
Malostranské nám. 25, Prague, Czech Republic

{krulis,yaghob}@ksi.mff.cuni.cz

Abstract. Current XPath processors use direct approach to query eval-
uation which is quite inefficient in some cases and usually implemented
serially. This may be a problem in case of processing complex queries on
large documents. We propose algorithms and XML indexing techniques
which are more efficient and which can utilize standard parallel tem-
plates. Our implementation is highly scalable and outperforms common
XML libraries.

Key words: XML, XPath, parallel, multi-threaded, multi-core

1 Introduction

The course of processor developement has changed significantly in the past few
years. Pursuit of core frequency is not as important as before. Multiple proces-
sor cores are integrated on a single chip, making parallel architectures available
to common users. This trend requires programmers to focus on problem paral-
lelization instead of classic linear optimization. Common tools for querying XML
documents do not exploit computational power of multi-core CPUs. Even though
this is not a problem in case of small documents and simple queries, processing
complex queries on large amount of data may benefit from parallelization.

In this paper, we will focus solely on processing single query on a single docu-
ment, which we expect to be loaded into main memory in DOM [7] and indexed.
This restriction seems very strong, however, mainstream computers of the day
can accomodate XML documents with hundreds of millions of elements in RAM.
Furthermore, we assume the following about the processed XML documents:

• Documents are shallow [18]. Element nesting depth does not exceedO(logN),
where N denotes number of elements.
• Strings (element names, contents, etc.) are short. We expect that all strings

have O(1) length. This is quite strong assumption, however, we are focusing
on processing the element structure, not on string algorithms.

• Documents contain only small number of element and attribute identifiers
respectively to total number of elements and attributes.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 60–71, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Efficient Implementation of XPath Processor on Multi-Core CPUs 61
2 Martin Krulǐs, Jakub Yaghob

Most XML documents have the properties described above, so our imple-
mentation will process them just fine. Documents that do not conform to our
assumptions will not be considered in this paper for the sake of scope.

XPath specification [6] contains a lot of details, many of which are uninterest-
ing from our perspective. We will focus on processing location paths, since they
present the most challenging part of XPath. Common implementations [10][11]
take direct approach which can lead to inefficient algorithms. We demonstrate
the problem on an example. Consider simple location path:

/descendant::a/following::b[P]

Let us assume that all elements b are in ‘following’ relation with any element
a. The following::b step then yields the same set of nodes for every element
a produced by previous step. Therefore, predicate P will be evaluated for each
node b O(Na) times, where Na denotes total number of elements a.

Straightforward implementation leads to an algorithm which has its time
complexity exponentially dependent on the level of predicate nesting. Fortu-
nately, this problem can be avoided by introducing vector operations and min-
context rules [2]. When each predicate is processed for whole vector of contexts
instead of traditional recursive evaluation, the exponential phantom menace is
disposed of and evaluation time remains polynomial in both size of the document
and query nesting depth.

The paper is organized as follows. Section 2 revises related work. Section 3
describes XML representation and indexing techniques. Section 4 inspects pro-
posed algorithms in detail. Section 5 suggests possible parallelism exploitation.
Section 6 presents experimental results and Section 7 concludes.

2 Related Work

Efficient implementation of XPath has been addressed in several papers. One
of the most significant works was presented by Gottlob et al. [2]. It proposes
algorithms for processing XPath queries in polynomial time. XPath also relies
on efficient evaluation of location axes which was addressed in [16]. The topic of
XML processing parallelization is relatively new. First studies focused on XML
parsing [14][15] and processing in a general way. Successful approach is to employ
work stealing [3] in order to reduce load balancing problems.

To our best knowledge, the only work directly related to parallel processing
of XPath queries was presented by IBM [4]. The paper proposes data, query and
hybrid partition strategies, how to divide workload among multiple threads. The
partitioned queries are then processed by Xalan. This technique can be improved
[5] by introducing metrics for processing costs. These metrics determine the best
points for partitioning.

We take different approach. Our strategy is to design algorithms which will
utilize parallel templates and ideas presented by Intel TBB [12]. These templates
implement solutions for common patterns in parallelism such as parallel-for or
parallel-scan algorithms.

62 Martin Krulǐs, Jakub Yaghob
XPath Implementation for Multi-Core CPUs 3

3 XML Index

XPath processor expects XML document to be loaded in main memory in ab-
stract tree structure (for example DOM). This structure provides basic opera-
tions for traversing the document such as finding children, parent, or attributes
of given node. Even though these operations are sufficient to traverse the whole
tree and process XPath query, they are quite ineffective for complex operations.

When processing XPath query, we are often required to retrieve all nodes
with specific name or of specific type that are in relation (defined by used axis)
with initial node-set. This task can be accelerated significantly when proper
index is built. We have used the following two indices in our implementation:
the Left-right-depth index and the element index.

The Left-right-depth index (also denoted LRD) is often used by many XML
algorithms and data structures [2][16][17] to determine the relation of two nodes
in constant time. The index is based on tagging nodes of DOM structure with
three integers - left, right, and depth value. We have tagged only element nodes
and attributes as other nodes are irrelevant for XPath evaluation. We denote l(v),
r(v), and d(v) the left-value, right-value, and depth of the node v respectively.

The element index is formed by hash table where element names are keys.
Each name holds a list of references to the DOM structure pointing to all ele-
ments with this name as depicted on Figure 1.

b

b

b

b

DOM

a

b

x

. . .

Fig. 1. Element index lists all elements of given name.

Links in the reference list are ordered by the position (i.e. the left-value) of
the nodes to which they point to. This ordering is very useful, as shown later.

3.1 XPath Axes Implementation

Let us have a look on each axis and how it can benefit from these indices.
In following descriptions, we expect to have context node c and location step
axis::x where the axis will vary. In every case, we extract the reference list
from element index using x as key, so we have list of all x elements at our disposal.

Implementation of the descendant axis is quite simple. The index reference
list is ordered by left-values of the nodes. Furthermore, we know that every
descendant of context element c has its left-value in range (l(c), r(c)〉. Such nodes

Efficient Implementation of XPath Processor on Multi-Core CPUs 63
4 Martin Krulǐs, Jakub Yaghob

are definitely stored in continuous subrange of the reference list. A binary-search
algorithm can be applied to find both beginning and end of the subrange.

The following axis uses the same approach. If we have an element c, all
following nodes have their left-values greater than r(c). We simply find the first
one and then take all nodes from its position to the end of the list.

The preceding axis is a little more complicated than the previous two. In
order to determine whether node u precedes context c, we need to compare r(u)
with l(c). Unfortunately, the reference list is not ordered by right-values. As the
right-value is always greater or equal left-value (of the same node), we will use
all nodes with left-value lesser than l(c) as candidates. These candidates contain
two types of nodes – predecessors and ancestors of c. We can test right-value of
each candidate and filter out the predecessors.

We might create second element index where references will be ordered by
right-values and implement evaluation of the preceding axis analogically to the
following axis. However, we did not use it in our implementation.

The ancestor axis cannot be effectively accelerated by this index. On the
other hand, we expect that XML documents are shallow, therefore the best way
to find all ancestors of context node is to follow parental links in XML tree
structure and filter nodes one by one.

Techniques described for descendant, following, and preceding axes could be
extended also to child, following-sibling, and preceding-sibling relations. In order
to do that, an element index must be also built for every node with children. Such
index contains only children elements of associated node. The implementation
would be analogical.

4 Algorithms

Before we describe optimization and implementation details of our XPath pro-
cessor, we will revise recursive algorithm for location path evaluation. A location
path consists of sequence of location steps. Each step takes node-set produced
by previous step (called initial node-set) and generates another node-set which
is used by successive step. First step uses the context node as a singleton and
last step produces node-set which is also the result of the whole location path.

The recursive algorithm evaluates location steps as follows. First, an interme-
diate node-set Si is generated for every node vi in the initial set by application
of location axis on vi and node test to filter out nodes of specific type or name1.
Each set Si is filtered by predicates and S′i (S′i ⊆ Si) is produced. Finally, all S′i
sets are united and the union is yielded as the result of the location step.

When a node-set is filtered by a predicate, the predicate is executed recur-
sively for every node in the set using the node, its position and size of the set
as context values. Result of the predicate is converted into Boolean value, and
if true, the tested node is included in the result. A location step may have more
than one predicate. In that case, predicates are applied one by one, each pro-
ducing another node-set which is handed over to successive predicate.
1 In our case, we focus only on name filters.

64 Martin Krulǐs, Jakub Yaghob
XPath Implementation for Multi-Core CPUs 5

As mentioned before, the recursive algorithm is not very efficient. Now, we
describe the most important optimizations used in our implementation.

4.1 Minimal Context Optimizations

First, we define context flags for each XPath expression (and subexpression):

• flag n for context node,
• flag p for position,
• and flag s for size.

These flags indicate, which parts of evaluation context are required by the
expression. Expression E is tagged with set of flags denoted cf(E) ⊆ {n, p, s}.
When a flag is present in the set cf(E), corresponding part of context is required
for evaluation of E. Formally, we define cf as shown in Table 1.

expression E context flags cf(E)

arithmetic operators (+,−, ∗, div,mod) cf(operand1) ∪ cf(operand2)

comparisons (<,≤, >,≥,=, 6=) cf(operand1) ∪ cf(operand2)

logical operators (and, or) cf(operand1) ∪ cf(operand2)

absolute location path {}
relative location path {n}
location step {n}
[predicate] cf(predicate)

union (|) cf(operand1) ∪ cf(operand2)

position() {p}
last() {s}
literals and functions without arguments {}
functions with arguments

S
cf(a), a ∈ arguments

Table 1. Formal definition of context flags

Even though there are eight (23) types of expressions depending on which of
n, p, s flags they have, we will streamline the situation by recognizing only three
context classes:

• Context-free class represents expressions with empty cf set. These expressions
are either constant (like literals) or contain absolute location paths.
• Expressions in context-node class requires only context node, thus their

cf(E) = {n}. Typical representants are relative location paths and location
steps.
• Finally, we place all remaining expressions in full-context class.

Efficient Implementation of XPath Processor on Multi-Core CPUs 65
6 Martin Krulǐs, Jakub Yaghob

We call the context-free class the weakest, because empty context flag set
is always a subset of any other class. Analogically, the full-context class will
be the strongest. Expression with non-empty cf ⊆ {p, s} is also considered to be
stronger than context-node expression, as the context position and size is always
generated together with nodes, hence node flag is in fact implicitly included.

When evaluating location step, many nodes can be filtered by predicates
multiple times if they appear in more than one intermediate (Si) set. This may
be unavoidable since the node can be at different positions or the Si sets can have
different sizes, thus they create a different context for the predicate evaluation.
However, if there are no predicates which require position or size context value,
the filtering procedure can be optimized.

Formally, if all predicates of a location step are from context-node or context-
free class, we may unite all Si sets before they are filtered by predicates. Then
the union is filtered instead, thus predicates are executed for each node at most
once. Furthermore, if there are some predicates from context-free class, we need
not evaluate them for every node, as it is sufficient to execute them just once.
If they resolve true, they can be removed from predicate list since they do not
restrict the result set in any way. Otherwise (if they turn false), we need not
resolve the location step nor the remaining part of the location path any more
as it will never yield any nodes.

4.2 Vectorization of Axes

Previous optimization can be used to improve processing of axes in location steps.
When axis is processed, single node is taken as input and a set of all conforming
nodes is returned. If there are no full-context predicates in the location step, the
intermediate node-sets (Si) are united right after the axis part of the step (with
the name filter) is resolved. Knowing this, we can optimize axis processing so
it will not retrieve intermediate set for each node, but rather use entire initial
node-set as input and yield the union of node-sets Si. In following algorithms
we expect that a node-set is represented by an array of nodes where nodes are
ordered by their left-values (i.e. in the document order).

Descendant axis utilizes following observations: descendants of a single node
are stored in continuous subrange of element index (as described in Section 3) and
descendant sets of two following nodes have empty intersection. Furthermore, if
we have initial nodes u and v where v is descendant of u, descendants of v are
also descendants of u, therefore we need to process only node u when retrieving
descendants. The algorithm will work as follows.

for i = 1 to |S| do
if i = 1 or not(S[i] descendant of last) then

last← S[i]
append descendants of S[i] to the result

end if
end for

66 Martin Krulǐs, Jakub Yaghob
XPath Implementation for Multi-Core CPUs 7

Following and preceding axes can be accelerated greatly by this optimization.
First, we have to find initial node with the lowest right-value (for the following
axis) or the greatest left-value (for the preceding axis). Then we use this node as
an input for simple version of axis resolution algorithm described in Section 3.
Finding the initial node is trivial in case of the preceding axis, since the node
with greatest left-value is always at the end of the set. In case of the following
axis, situation is slightly more complicated. Node with the smallest right-value
is either first node in the initial set or its descendant:

i← 1
while i < |S| and r(S[i]) > r(S[i+ 1]) do
i← i+ 1

end while
return following nodes of S[i]

Almost every other axis may be accelerated as well using similar approach.
We omit the description of the algorithms for the sake of scope. Complete
overview can be found in [1].

4.3 Predicate Caches

Previous optimizations reduce necessary amount of work in many situations.
However, the recursive algorithm still suffers from exponential time complexity.
We shall avoid this problem using caches for predicate expressions. Problematic
expressions (which are likely to be evaluated multiple times with the same con-
text) will be covered by caches. If a cache covers an expression, all results of
this expression are stored in cache (when first computed). When the expression
is evaluated, the result is first looked up in the cache, thus each expression is
executed for each context at most once.

The cache will reflect context class of the covered expression (e.g. expression
from context-node class must be covered by context-node cache). The class of
the cache defines which part of the context is used for indexing. Therefore,
context-free cache stores single value, context-node cache is indexed by nodes
and context-full cache utilizes context node, position and size. Full-context cache
may consume up to O(N4) memory (where N is size of the document); however,
we may apply limits for cache size and make it forget records. Forgetful cache will
not save us from exponential time complexity, but it still improves performance
significantly.

Following rules are applied for caches:

• Literal values must not be covered by a cache directly.
• When an expression is covered by a cache, all its subexpressions from the

same or stronger class are also considered to be covered. This rule is transitive
and does not apply to predicates (a predicate cannot be covered transitively).
All expressions from weaker classes must be covered by another cache of their
own.

Efficient Implementation of XPath Processor on Multi-Core CPUs 67
8 Martin Krulǐs, Jakub Yaghob

• If location step has a full-context predicate, all predicates of that step must
be covered by caches. Otherwise, no predicate of that step needs to be cov-
ered, but these rules are applied recursively on nested predicates. Further-
more, when a predicate must be covered by cache, a cache with Boolean
values is always used, considering the predicates are implicitly wrapped by
boolean() function.

The cache is implemented by concurrent hash-map from TBB library [13].
This hash-map works as hash table with concurrent access with fine grade lock-
ing. Locking is implemented by atomic operations and each position in the table
can be locked individually. Therefore, collisions on locks will be rare. Unfor-
tunately, the results indicate that locking on caches has significant impact on
efficiency.

5 Parallelization

We have described data structures and algorithms which should allow us to ex-
ploit parallelism using standard templates. These templates (parallel-for, parallel-
reduce, parallel-scan, etc.) and data structures (concurrent vector, concurrent
hash-map, etc.) are described in literature [12]. We omit their description for
the sake of scope.

The implementation presents many opportunities to apply these templates
and concurrent data structures. We describe only the most interesting ones. More
detailed description is provided in related work [1].

5.1 Predicate Filtering

We expect to have list of predicates Pi (i = 1 . . . π) and a node-set S being
filtered. The filtering is processed as follows.

• First, all context-free predicates are resolved. Predicates resolved as true are
immediately removed. When a single predicate is resolved as false, the whole
filtering operation yields empty node-set since every node is exterminated
by such predicate.

• Remaining predicates are grouped into segments. Full-context predicates
must be positioned as first predicate in segment and there can be only one
full-context predicate in each segment. Other predicates (from the context-
node class) are grouped together to form as large segments as possible. For
example, predicates2 nnfnfnn are grouped as (nn)(fn)(fnn).

• Node-set S is filtered by first segment producing S′, then S′ is filtered by
second segment and so on. Last segment produces the result of whole filtering
operation.

2 Where n denotes context-node predicate and f denotes full-context predicate.

68 Martin Krulǐs, Jakub Yaghob
XPath Implementation for Multi-Core CPUs 9

The node-set is filtered by segment in two phases. In the first phase, all nodes
from initial set are filtered by all predicates in the segment (the predicate order
is respected). When a predicate is resolved as false, corresponding node in initial
set is replaced by null value. In the second phase, non-null values are copied
into filtered set.

The first phase utilizes parallel-for pattern. All nodes from the set are pro-
cessed concurrently. Each task affects only its nodes, so no explicit synchroniza-
tion is required. The second phase copies only valid nodes and must respect the
ordering of the nodes. We use parallel-scan, where first pass (the pre-scan) only
calculates new offsets for nodes (after nulls are removed) and the second pass
(final scan) copies the nodes.

5.2 Node-sets Merging

Some situations of XPath processing require merging node-sets (namely location
steps with full-context predicates and the union operator). In both situations, a
concurrent hash-map is used. All nodes are inserted into the hash-map (which
ensures uniqueness of each node), then retrieved into an array and sorted. All
three steps are performed in parallel fashion. Nodes that are inserted into hash-
map are processed by parallel-for. The parallel-scan copies nodes into an array
where first pass computes offsets and second pass copies the nodes. Finally, the
array is sorted by parallel sort [12].

In case of union operator, we employ another parallel-for which processes
operands of the union, so we have top level loop which operates over operands
(and resulting node-sets) and nested loops which insert nodes into hash-map.

5.3 Processing Axes

There are hardly any opportunities for parallelism when an axis is processed
for a single node. The only thing which can be done concurrently is copying
sequence of nodes (using parallel-for). However, even when a location step is
processed without optimizations, we may still process each node from initial set
(i.e. resolve the axis and filter it by predicates) concurrently.

Vectorized processing of axes presents more opportunities for parallelism. In
many cases (e.g. descendant axis, child axis, ...), node-sets produced by initial
nodes are disjoint. Therefore, we need not use concurrent hash-map (which re-
quires locking) to merge them. Instead, we use parallel-scan to assemble merged
sets in correct order. The parallel scan is used as usual – first pass computes
offsets for nodes and the second pass copies the nodes.

6 Practical Tests

Practical experiments were designed for two things. First, we would like to de-
termine scalability of the solution and to measure speedup on multiple cores.
Second, we compare our solution with existing libraries for XPath processing.

Efficient Implementation of XPath Processor on Multi-Core CPUs 69
10 Martin Krulǐs, Jakub Yaghob

The comparison is relevant only for our implementation restricted to single core
as both libxml and Xalan are single-threaded.

6.1 Methodology, Testing Data, Hardware Specifications

Performed tests will focus solely on execution speed. We will measure time re-
quired to evaluate a query using system real-time clock. Other operations such
as loading XML data or processing results will not concern us. Real-time clock
will better reflect the practical characteristics of the implementation and cover
both application and kernel time (thus include context switching, thread syn-
chronization, etc.).

Each query is executed 10×. Raw average is computed as arithmetic average
of all 10 times. Then, each measured time which is greater than raw average
multiplied by 1.25 (i.e. with 25% tolerance) is excluded. Final time is computed
as arithmetic average of remaining values.

It is still possible that all ten measured values are distorted due to some long
lasting activity running on the system at the same time as the tests. Therefore,
each test-set was repeated three times in different daytime. These three results
were closely compared and if one of the values was obviously tainted, the test
was repeated. A result is considered tainted if it deviates from the other two by
more than 25%.

Document used for testing was generated by xmlgen, a XML document gen-
erator developed under XMark [8] project. This document simulates an auction
website (a real e-commerce application) and contains over 3 million elements.

Queries evaluated on the document are taken from XPathMark performance
tests [9]. These queries are especially designed to determine speed of tested
XPath implementation. Queries that were not compatible with our subset of
XPath were omitted. Unfortunately, some of the results are not presented here
due to lack of space. Complete data and results may be found in [1].

All test were performed on Dell M905 server with four six-core AMD Opterons
8431 (i.e. 24 cores) clocked at 2.4 GHz. Server was equipped with 96 GB of RAM
organized in 4-node NUMA. A RedHat Enterprise Linux (version 5.4) was used
as operating system.

6.2 Results

Table 2 summarizes times (in ms) measured for our implementation, libxml and
Xalan libraries. Columns Ct show times required by our implementation on t
threads. Symbol ∞ represents times that were completely out of scale3.

The results suggest that our implementation is highly scalable. The best
speedup was observed at query B6 which runs 18.8× faster on 24 cores than on
single core. Unfortunately, some queries (A2, A3, C2, D2, and E4) have shown
poor speedup or even slow-down. This is mostly caused by the structure of
these queries. When intermediate results between location steps are too small,
3 Times greater than 2 millions ms.

70 Martin Krulǐs, Jakub Yaghob
XPath Implementation for Multi-Core CPUs 11

C1 C2 C4 C8 C16 C24 libxml Xalan

A2 2.531 3.317 2.603 2.381 2.488 2.157 284.1 1054

A3 2.816 3.520 2.562 2.43 2.366 2.127 312.5 305.8

B5 629.9 337.1 208.9 135.3 85.38 80.94 ∞ ∞
B6 5542 2809 1470 755.6 400 295.2 ∞ ∞
B9 17830 9257 4769 2687 1654 1422 ∞ ∞
B10 8955 4663 2396 1354 835.8 707.7 ∞ ∞
C1 65.33 38.15 21.1 17.09 19.4 19.09 516.8 57.04

C2 176.4 131.7 137.2 162.7 159.3 135.1 118.6 88.45

D2 0.925 2.216 1.095 1.531 2.377 1.754 3922 45910

E4 360.1 306.8 322.4 372.6 384.2 338.9 2891 369.9

E5 6325 3304 1724 907.5 490.1 369.1 ∞ ∞

Table 2. Times in ms for XPathMark [9] tests

the query cannot benefit from data parallelism very much. Almost all of these
queries (except for C2 and E4) are resolved very quickly on single core, therefore
we need not parallelize them at all. Queries A2, A3, and D2 are even slower
on two cores than on single core. This is caused by locking overhead of caches.
Finally, we have observed some fluctuations between times on 8, 16, and 24 cores
which are most likely caused by effects of memory access on NUMA systems and
thread distribution among real processors.

In comparison with known XPath processors [10][11], our implementation
outperforms them in almost every test. The most significant difference is in
queries B5, B6, B9, B10, and E5 which all contain following or preceding axis.
However, queries C1 and C2 are resolved slightly slower in our implementation,
which is most likely caused by better optimizations of comparisons in libxml and
Xalan.

7 Conclusions

This paper presents algorithms and indexing data structures for XPath pro-
cessing which can be easily adapted by standard parallelization templates. Our
experimental results demonstrate that proposed algorithms scale very well for
long lasting queries. These algorithms are beneficial also for sequential process-
ing as they outperform libxml and Xalan libraries in almost every test even on
single core.

Our implementation uses some data structures which require locking. These
structures are most likely responsible for poor speedup of some tested queries.
Furthermore, our implementation does not analyze executed query nor data to
determine whether particular part of the query should be parallelized or not.
We use simple greedy method to partition workload and hope for the best.

Efficient Implementation of XPath Processor on Multi-Core CPUs 71
12 Martin Krulǐs, Jakub Yaghob

We will focus on removing locking completely and try to design metrics for
query evaluation cost in our future work.

References

1. M. Krulǐs, J. Yaghob. Algorithms for Parallel Searching in XML Datasets, 2009.
http://www.ksi.mff.cuni.cz/~krulis/?page=study/master_thesis

2. G. Gottlob, C. Koch, R. Pichler. Efficient algorithms for processing XPath queries.
ACM Trans. Database Syst., 30(2):444491. ACM, New York, NY, USA, 2005.

3. Lu, W. and Gannon, D. Parallel XML Processing by Work Stealing
SOCP ’07: Proceedings of the 2007 workshop on Service-oriented computing per-
formance: aspects, issues, and approaches

4. Bordawekar, R. and Lim, L. and Shmueli, O. Parallelization of XPath queries using
multi-core processors: challenges and experiences, EDBT ’09: Proceedings of the
12th International Conference on Extending Database Technology

5. Bordawekar, R. and Lim, L. and Kementsietsidis, A. and Kok, B.W.L. To Parallelize
or Not to Parallelize: XPath Queries on Multi-core Systems

6. Clark, S. DeRose, et al. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation, 16:1999, 1999.

7. XML Document Object Model. http://www.w3.org/DOM/
8. XMark - benchmark for various XML technologies. http://www.xmlbenchmark.org/
9. XPathMark - benchmark for XPath 1.0.

http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/

10. Libxml2 - The XML Library for GNOME. http://xmlsoft.org/
11. Xalan for C++ - XSLT and XPath library developed by Appache.

http://xml.apache.org/xalan-c/

12. J. Reinders. Intel threading building blocks. OReilly & Associates, Inc., Sebastopol,
CA, USA, 2007.

13. Intel Threading Building Blocks – an open source library for parallel programming.
http://www.threadingbuildingblocks.org/.

14. Pan, Y. and Lu, W. and Zhang, Y. and Chiu, K. A static load-balancing scheme for
parallel xml parsing on multicore cpus. IEEE International Symposium on Cluster
Computing and the Grid, Rio de Janeiro, 2007

15. Wu, Yu, Qi Zhang, Zhiqiang Yu and Jianhui Li. “A Hybrid Parallel Processing for
XML Parsing and Schema Validation.” Presented at Balisage: The Markup Confer-
ence 2008, Montral, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The
Markup Conference 2008. Balisage Series on Markup Technologies, vol. 1 (2008).
doi:10.4242/BalisageVol1.Wu01.

16. T. Grust. Accelerating XPath location steps. pages 109120. ACM, New York, NY,
USA, 2002.

17. M. Kratky, J. Pokorny, and V. Snasel. Implementation of XPath axes in the
multi-dimensional approach to indexing XML data. Current Trends in Database
Technology-Edbt 2004 Workshops: EDBT 2004 Workshops, PhD, DataX, PIM,
P2P&DB, and Clustweb, Heraklion, Crete, Greece, March 14-18, 2004: Revised
Selected Papers, page 219. Springer, 2004.

18. I. Mlýnková, K. Toman, and J. Pokorný. Statistical Analysis of Real XML Data
Collections.
In COMAD06: Proc. of the 13th Int. Conf. on Management of Data, pages 2031,
New Delhi, India, 2006. Tata McGraw-Hill Publishing Company Limited.

Fast Fibonacci Encoding Algorithm?

Jǐŕı Walder, Michal Krátký, and Jan Platoš

Department of Computer Science
VŠB–Technical University of Ostrava

17. listopadu 15, Ostrava–Poruba, Czech Republic

{jiri.walder,michal.kratky,jan.platos}@vsb.cz

Fast Fibonacci Encoding Algorithm?

Jǐŕı Walder, Michal Krátký, and Jan Platoš

Department of Computer Science
VŠB–Technical University of Ostrava

17. listopadu 15, Ostrava–Poruba, Czech Republic

{jiri.walder,michal.kratky,jan.platos}@vsb.cz

Abstract. Data compression has been widely applied in many data pro-
cessing areas. Compression methods use variable-length codes with the
shorter codes assigned to symbols or groups of symbols that appear in
the data frequently. Fibonacci code, as a representative of these codes,
is often utilized for the compression of small numbers. Time consump-
tion of encoding as well as decoding algorithms is important for some
applications in the data processing area. In this case, efficiency of these
algorithms is extremely important. There are some works related to the
fast decoding of variable-length codes. In this paper, we introduce the
Fast Fibonacci encoding algorithm; our approach is up-to 4.6× more
efficient than the conventional bit-oriented algorithm.

1 Introduction

Data compression has been widely applied in many data processing areas. Vari-
ous compression algorithms have been developed for processing text documents,
images, video, etc. In particular, data compression is of the foremost importance
and has been well researched as it is presented in excellent surveys [13, 18].

Various codes have been applied for data compression [14]. In contrast with
fixed-length codes, statistical methods use variable-length codes, with the shorter
codes assigned to symbols or groups of symbols that have a higher probability of
occurrence. People who design and implement variable-length codes have to deal
with these two problems: (1) assigning codes that can be decoded unambiguously
and (2) assigning codes with the minimum average size.

In some applications, a prefix code is required to code a set of integers whose
length is not known in advance. The prefix code is a variable-length code that
satisfies the prefix property. As we know, the binary representation of integers
does not satisfy this condition. In other words, the size n of the set of integers
has to be known in advance for the binary representation since it determines the
code size as 1 + blog2 nc. Fibonacci coding is distinguished as a suitable coding
for a compression of small numbers [13].

? Work is partially supported by Grants of GACR No. P202/10/0573 and SGS, VŠB–
Technical University of Ostrava, No. SP/2010138.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 72–83, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Fast Fibonacci Encoding Algorithm 73

The time consumption of decompression is more critical than the time of
compression; therefore, efficient decompression algorithms were studied in many
works for the decompression of data structures [15, 6, 16] or text files [12, 3]. In
the case of physical implementation of database systems, retrieval of compressed
data structure’s pages may be more efficient than retrieval of uncompressed
pages due to the fact that the cost of decompression is lower than the cost of
page accessing in the secondary storage [16, 2].

Since fast decoding algorithms have not yet been known, variable-length
codes have not been used to compression of data structures, and, in generally,
in the data processing area. The first effort of the fast decoding algorithm for
Fibonacci codes of order≥ 2 has been proposed in [7, 8]. We studied fast decoding
algorithms of various variable-length codes in our previous work [17]. The fast
encoding algorithms for the Fibonacci code yet not has been studied. In the
case of data structures, pages are decompressed during every reading from the
secondary storage into the main memory or items of a page are decompressed
during every access to the page. If insert or update operations are considered,
data compression becomes more significant.

In this article, we present Fast encoding algorithm of the Fibonacci of order
2 code. In Section 2, we describe the conventional Fibonacci of order 2 encod-
ing algorithm. In Section 3, we provide a theoretical background of the fast
encoding algorithm based on Fibonacci right shift and Encoding-Interval table.
In Section 4, experimental results are presented and the proposed algorithm is
compared to the conventional approach. In the last section, we conclude this
paper and outline future works.

2 Fibonacci Coding

In this section, the theoretical background of Fibonacci of order 2 is briefly
described. This universal code introduced by Apostolico and Fraenkel in [1] is
based on the Fibonacci numbers [10]. The sequence of Fibonacci numbers is
defined as follows:

Fi = Fi−1 + Fi−2 , for i ≥ 1,

where F−1 = F0 = 1.

Definition 1. (Fibonacci binary encoding and computation of its value)
Let F (n) = a0a1a2 . . . ap be the Fibonacci binary encoding of a positive inte-

ger n. The value of the Fibonacci binary encoding, denoted V (F (n)), is defined
as follows:

V (F (n)) = n =
p∑

i=0

aiFi (ai ∈ {0, 1}, 0 ≤ i ≤ p)

In the Fibonacci binary encoding, each bit represents a Fibonacci number Fi.
Such a number has the property of not containing any sequence of two consec-
utive 1-bits [1]. This property is utilized for the construction of the Fibonacci

74 Jǐŕı Walder, Michal Krátký, Jan Platoš

code F(n) of number n. Fibonacci code F(n) maps n onto a binary string so
that the string ends with a sequence of two consecutive 1-bits. The Fibonacci
codes for some integers are shown in Table 1.

Table 1. Examples of Fibonacci codes for some integers

n F (n) F(n)

1 1 11
2 0 1 011
3 0 0 1 0011
4 1 0 1 1011
5 0 0 0 1 00011
6 1 0 0 1 10011
7 0 1 0 1 01011
8 0 0 0 0 1 000011
16 0 0 1 0 0 1 0010011
32 0 0 1 0 1 0 1 00101011

i 0 1 2 3 4 5 6
Fi 1 2 3 5 8 13 21

In Algorithm 1, we see how the conventional bit-oriented algorithm encodes
a positive integer n into a Fibonacci code. This algorithm outputs the encoded
number into Fn and its length into LFn. Due to the fact that bits of Fibonacci
coding are encoded in the reverse order we must use the temporary Fn variable.
Bits in the variable are right-shifted in each inner loop.

3 Fast Fibonacci Encoding Algorithm

The main issue of the conventional encoding algorithm is handling encoded num-
bers in the bit-by-bit manner. To design a fast encoding algorithm, encoded
numbers are separated into segments larger than one bit. Similar principles have
been utilized in fast decoding algorithms [17, 8, 9]. The separation of encoded
numbers utilizes the Fibonacci right shift operation introduced in [17, 9]. Indi-
vidual segments are then encoded by the precomputed Encoding-Interval table.
When all individual segments are encoded, they are put together into the com-
plete code. The Fibonacci right shift and Encoding-Interval table are presented
in Section 3.1. The fast algorithm is explained in Section 3.2.

3.1 Fibonacci Shift Operation and Encoding-Interval Table

The Fibonacci shift operation introduced in [17, 9] is required for the bit manip-
ulation in fast encoding and decoding algorithms. In this paper, we introduce
an efficient computation of this operation.

Fast Fibonacci Encoding Algorithm 75

input : n, a positive integer
output: Fn, encoded number by Fibonacci code of order 2 with LFn length

p ← 0 ;1

while Fp ≤ n do p ←p +1;2

p ← p − 1;3

Fn ← 1;4

LFn ← 1;5

while p ≥ 0 do6

Fn ← Fn << 1;7

if Fp ≤ n then8

Fn ← Fn | 1;9

n ← n − Fp;10

end11

LFn ←LFn +1;12

p ← p − 1;13

end14

Algorithm 1: Conventional encoding algorithm for the Fibonacci code of
order 2

Definition 2. Fibonacci shift operation
Let F (n) = a0a1a2 . . . ap be a Fibonacci binary encoding, k be an integer,

k ≥ 0. The k-th Fibonacci left shift F (n) <<F k is defined as follows:

F (n) <<F k =

k︷ ︸︸ ︷
00 . . . 0 a0a1a2 . . . ap

Fibonacci right shift is defined as is follows:

F (n) >>F k = akak+1ak+2 . . . ap

We utilize k-Fibonacci right shifts for the separation of numbers into seg-
ments. We do not need all k-Fibonacci right shifts, we only need multiplies of
the segment size S. If we consider 32 bit-length integers than the length of the
largest code is L(F (232)) = 46; therefore, k ∈ {0, 8, 16, 24, 32, 40} for S = 8 and
k ∈ {0, 16, 32} for S = 16.

The conventional approach to the calculation of Fibonacci right shift works
in the following steps:

1. Compute F (n) for the n value according to Definition 1.
2. Binary-shift the bits of F (n) by k: F (n) >> k.
3. Compute the value of the shifted number F (n) >> k according to Defini-

tion 1.

The Fibonacci right shift operation is time consuming since the Fibonacci
value computation in Steps 1 and 3 requires a summarization of Fibonacci num-
bers for 1-bits; therefore, we utilize the Encoding-Interval table for the fast
computation.

76 Jǐŕı Walder, Michal Krátký, Jan Platoš

The Encoding-Interval table allows separating of numbers into segments with
the k-th Fibonacci right shift and then direct translation of segments into Fi-
bonacci codes. The size of the Encoding-Interval table depends on the size of
the segment S. The segment size is usually one byte, i.e. S = 8. When we use
larger segments the length of the Encoding-Interval table grows; on the other
hand, the encoding becomes faster. There are FS−1 codes which can fit into one
segment; it means F8 − 1 = 54 codes which can fit into the 8 bit-length segment
and F16 − 1 = 2, 583 codes for the 16 bit-length segment.

Therefore, the total size of the Encoding-Interval table is:

table length = (FS − 1)×
⌈

2b

S

⌉

where b is the number of bits of the largest code.
Each line of the Encoding-Interval table is then built for all F (n) codes which

can fit into one segment and for all k-th Fibonacci right shifts. Each line includes
the following values (see Table 3 for some examples):

– F (n) – the Fibonacci code stored in the segment.

– L(F (n)) – the bit-length of the Fibonacci code

– k – the parameter k of the Fibonacci right shift operation

– n – the value stored in the actual segment n = V (F (n))

– 〈nmin, nmax〉 – an interval of numbers before the shift operation; this number
is formally defined as follows: ∀x ∈ 〈nmin, nmax〉 : V (F (x) >> F k) = n.

This table can be used for the computation of the k-th Fibonacci right shift.
For each x value we need to pass through the table to find the correct line
where x ∈ 〈nmin, nmax〉. In this line we can directly read the shifted value
V (F (x)) >>F k = n and also the corresponding Fibonacci code F (n). Ob-
viously, we need to pass only lines with correct k-th Fibonacci right shift.

To be able to compute a shifted value as fast as possible, we must consider
the properties of the Fibonacci code. Let Fi denote the i-th term of the Fibonacci
sequence then we can express each Fibonacci number by

Fi =
∥∥bφi

∥∥

where φ is the well-known golden ratio [11] and a is the coefficient of the domi-
nating term [9]. In the case of Fibonacci of order 2 the value φ = 1+

√
5

2 ≈ 1.6180
and b = 3

√
5+5
10 [4]. The Fibonacci sequence calculated according to this formula

is shown in Table 2.

Fast Fibonacci Encoding Algorithm 77

Table 2. Examples of the Fibonacci sequence calculation

i aφi
‚‚aφi

‚‚

0 1.17 1
1 1.89 2
2 3.07 3
3 4.96 5
4 8.02 8
5 12.98 13
6 21.01 21
7 33.99 34
8 55 55
9 89 89
10 144 144

If we utilize this property, Fibonacci right shift F (n) >>F k is approximately
calculated by the following equation:

a0a1a2 . . . ap >>F k =
p∑
i=0

aiFi >>F k =
p∑
i=0

ai
∥∥bφi

∥∥ >>F k

≈
p∑
i=0

aibφ
i >>F k =

pP
i=0

aibφ
i

φk =
p∑
i=0

aibφ
i−k ≈

p∑
i=0

ai
∥∥bφi−k

∥∥ =

p∑
i=0

aiFi−k =
p−k∑
i=−k

ai−kFi =
p−k∑
i=0

ai−kFi =akak+1ak+1 . . . ap.

The shift operation result is not calculated precisely due to the fact that we
ignore twice rounds. We can simply rewrite the approximate computation of the
Fibonacci right shift as follows:

V (F (n) >>F k) ≈
∥∥∥∥
V (F (n))

φk

∥∥∥∥

The maximum error of the estimation is 1; by experiments we found, when
the estimation misses, it is overestimated; therefore, the correct value is less
by 1. To check if the estimation is correct we compare the estimation with a
range in the Encoding-Interval table. If the check fails, we simply subtract the 1
value and receive the correct right shift value. In other words, this estimation
decreases the linear complexity of the table scan to at most two attempts.

Example 1. First, let us consider V (F (n)) = n = 265; F (n) = 001010100001.
We calculate the estimation of the 8-th Fibonacci right shift as follows:

V (F (265) >>F 8) ≈
∥∥∥∥

265
φ8

∥∥∥∥ =
∥∥∥∥

265
1.61808

∥∥∥∥ =
∥∥∥∥

265
46.9787

∥∥∥∥ = ‖5.4493‖ = 5

78 Jǐŕı Walder, Michal Krátký, Jan Platoš

Table 3 shows some lines of the Encoding-Interval table for the 8-th Fibonacci
right shift. After checking the 5-th line of the table we see that the value lies in
the interval < 233; 287 >; therefore, V (0001) = 5 is the correct value of the 8-th
Fibonacci right shift.

Second, let us consider V (F (n)) = n = 280; F (n) = 000001010001. We
calculate the estimation:

V (F (280) >>F k) ≈
∥∥∥∥

280
46.9787

∥∥∥∥ = ‖5.9601‖ = 6

After checking the interval in the 6-th line of the Encoding-Interval table we
see that the value not lies in the interval < 288; 321 >; therefore, the estimation
is not correct and the correct value is less by 1. The correct value of the 8-th
Fibonacci right shift of 280 is V (0001) = 5.

Table 3. Examples of the Encoding-Interval table for the 8-th and 16-th Fibonacci
right shifts

n F (n) L(F (n)) k nmin nmax n F (n) L(F (n)) k nmin nmax

1 1 1 8 55 88 1 1 1 16 2,584 4,180
2 2 2 8 89 143 2 2 2 16 4,181 6,764
3 4 3 8 144 198 3 4 3 16 6,765 9,348
4 5 3 8 199 232 4 5 3 16 9,349 10,945
5 8 4 8 233 287 5 8 4 16 10,946 13,529
6 9 4 8 288 321 6 9 4 16 13,530 15,126
7 10 4 8 322 376 7 10 4 16 15,127 17,710

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

27 73 7 8 1,275 1,308 27 73 7 16 59,898 61,494

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

46 149 8 8 2,173 2,206 46 149 8 16 102,085 103,681

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

3.2 Fast Fibonacci Encoding Algorithm

The fast encoding algorithm is shown in Algorithm 2. This algorithm utilizes the
previously proposed Encoding-Interval table denoted by EIT . Due to the fact
that the bits of the Fibonacci code are stored in the reverse order we need to write
the bits of segments in the reverse order as well. Encoded segments or their parts
are stored in a specific position of the result Fn by the SetV alueOfSegment
function.

In Algorithm 2, n is encoded by Fibonacci coding; the result is stored in
the Fn, the length is stored in the LFn. Short numbers with the code lower
than F8 are directly encoded by the Encoding-Interval table (see Lines 3–5).
For larger numbers we first need to find the maximal k of the Fibonacci right

Fast Fibonacci Encoding Algorithm 79

shift (see Line 7). After the number is separated with k-Fibonacci right shift, it
is encoded by the Encoding-Interval table and stored into the highest segment
with position k/8 (see Lines 8–10). In Line 11, we subtract the minimal range
of the encoded segment from the n. In Lines 12–20, all other segments except
the lower one are separated by Fibonacci right shifts and they are encoded by
the Encoding-Interval table. The length of the encoded number is increased by
the segment size in Line 19. The lowest segment is encoded in Line 21. Finally,
in Lines 23–24, the delimiter is put at the end of the encoded number.

input : n, a positive integer
output: Fn, number encoded by Fibonacci code of order 2 with the LFn

length

Fn ← 0 ;1

k ← 8 ;2

if n < Fk then3

LFn ← EIT[k][Number].LFn;4

SetValueOfSegment(Fn,0,EIT[k][Number].Fn);5

else6

while n < Fk+8 do k ← k +8;7

n ← n >>F k;8

LFn ← 8+ EIT[k].LFn;9

SetValueOfSegment(Fn,k/8,EIT[k][n].Fn);10

n ← n −EIT[k][n].Nmin;11

while k > 8 do12

k ← k −8;13

if n ≥Fk then14

n ← n >>F k;15

n ← n − EIT[k][n].Nmin;16

SetValueOfSegment(Fn,k/8,EIT[k][n].Fn);17

end18

LFn ←LFn +8;19

end20

SetValueOfSegment(Fn,0,EIT[k][Number].Fn);21

end22

SetBit(Fn,LFn,1);23

LFn ←LFn +1;24

Algorithm 2: Fast encoding algorithm for the Fibonacci code of order 2

Example 2. Encoding of the number 17327 is depicted in Figure 1. The value
of the Fibonacci code stored in all segments is V (F (17327)) = 17327. Encoding
of the highest segment is depicted in Figure 2(a). After the 16-th Fibonacci
right shift of the value F (17327), i.e. F (17327) >>F 16, we obtain the shifted
Fibonacci code F (7). The value after the shift is depicted in Line 3. It represents
the Segment 2 value. We directly access the line 7 of the Encoding-Interval table

80 Jǐŕı Walder, Michal Krátký, Jan Platoš

by the 16-th Fibonacci right shift and we directly find the code F (7) = 10 with
the length L(F (7)) = 4. The result is in the range 〈15127; 17710〉. The lower
bound of the range is depicted in Line 2. The value of Segments 0 and 1 is
obtained by subtracting the lower bound of the range from the V (F (17327))
number, i.e Segments 0 and 1 stores V (F (17327))− 15127 = V (F (2200)). This
encoding is carried out in Lines 8–11 of Algorithm 2.

1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1

F()17327

0 0 0 0 01 0 1

F F(17327) >> 16= (7)F

Segment 1

10

LINE 1

LINE 2

LINE 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

F()15127

F()7

Segment 0

F()2200

Segment 2

(a)

1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1

Segment 2

F(2)200

1 0 1 0 1 0 0 1

F F(2200) >> 8= (46)F

Segment 1

149

LINE 1

LINE 2

LINE 3

0 0 0 0 0 0 0 0 1 0 10 1 0 1 0

F()2173

F()46

Segment 0

F()27

(b)

Fig. 1. Example of Fast Fibonacci encoding

Further encoding is depicted in Figure 2(b). The value of the Fibonacci code
stored in Segments 0 and 1 is V (F (2200)) = 2200. After the 8-th Fibonacci
right shift of the value F (2200), i.e. F (2200) >>F 8, we obtain the shifted
Fibonacci code F (46). The value after the shift is depicted in Line 3. It rep-
resents the separated value from Segment 1. We directly access the line 46 of
the Encoding-Interval table by the 8-th Fibonacci right shift and we directly
find the code F (46) = 149 with the length L(F (46)) = 8. The result is in the
range 〈2173; 2206〉. The lower bound of the range is depicted in Line 2. The
value of Segment 0 is obtained by subtracting the lower bound of the range from
V (F (2200)) number, i.e Segment 0 includes V (F (2200)) − 2173 = V (F (27)).
This encoding is carried out in Lines 12–20 of Algorithm 2.

Fast Fibonacci Encoding Algorithm 81

The last Segment 0 with the value V (F (27)) is directly encoded into F (27) =
73 with the length L(F (27)) = 7 in Line 21 of Algorithm 2. We access the line
27 of the Encoding-Interval table for any shift to obtain this value, because we
do not need any following subtraction.

Finally, the 1-bit delimiter is added in position 8+8+L(F (7))+1 = 8+8+4 =
12 of the encoded number (see Lines 23–24 of Algorithm 2).

4 Experimental Results

The proposed Fast Fibonacci encoding algorithm has been tested and compared
with the conventional algorithm. The algorithms’ performance has been tested
for various test collections. The tests were performed on a PC with dual core
Intel 2.4GHz, 3 GB RAM using Windows 7 32-bit.

The test collections used in experiments have the same size: 10, 000, 000 num-
bers. The proposed algorithm is universal and it may be applied for arbitrary
numbers > 0. However, we worked with numbers ≤ 4, 294, 967, 295, it means the
maximal value is the value of the 32 bit-length binary number. Tested collections
are as follows:

– 8-bit – a collection of random numbers ranging from 1 to 255
– 16-bit – a collection of random numbers ranging from 256 to 65,535
– 24-bit – a collection of random numbers ranging from 65,536 to 16,777,215
– 32-bit – a collection of random numbers ranging from 16,777,216 to

4,294,967,295
– ALL - a collection of random numbers ranging from 1 to 4,294,967,295

Table 4. Fast Fibonacci encoding times and speedup ratios for different random col-
lections for conventional and fast algorithms with different segment sizes

Algorithm Conventional Fast S = 8 Fast S = 16
/ Time Time Speedup Time Speedup

Collection [ms] [ms] [times] [ms] [times]

8-bit 1,327 553 2.4 248 5.4
16-bit 2,399 889 2.7 547 4.4
24-bit 3,538 1,375 2.6 865 4.1
32-bit 4,539 1,829 2.5 992 4.6
ALL 4,547 1,808 2.5 992 4.6

Avg. 3,270 1,291 2.5 729 4.6

We performed tests for segment sizes S = 8 and S = 16. We ran each test 10
times and calculated average values. Results of all tests are depicted in Table 4
and Figure 2. The Fast Fibonacci encoding algorithm is approximately 2.6×
faster than the conventional approach for the segment size S = 8 and 4.6×

82 Jǐŕı Walder, Michal Krátký, Jan Platoš

faster for the segment size S = 16. The encoding times linearly increase with the
bit-length of encoded numbers but the speedup ratio is not influenced by this
increasing.

8-bit 16-bit 24-bit 32-bit ALL Avg
0

1,000

2,000

3,000

4,000

5,000

Encoding Times

Conventional Fast S=8 Fast S=16

[m
s]

(a)

8-bit 16-bit 24-bit 32-bit ALL Avg
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Speedup Ratio

Speedup Ratio
S=8

Speedup Ratio
S=16

[ti
m

es
]

(b)

Fig. 2. (a) Encoding times for random collections and conventional and fast algorithms.
(b) Speedup ratios between conventional and fast algorithms for random collections.

5 Conclusion

In this paper, the fast encoding algorithm for the Fibonacci code of order 2
is introduced. We introduced the effective implementation of Fibonacci right
shift which is utilized by the encoding algorithm for separating integers into
segments. The segments are directly translated into the Fibonacci code by the
Encoding-Interval table. The improvement depends on the segment size used for
the separation of the encoded numbers. For the segment size S = 8 (it means
one byte), the Fast Fibonacci encoding is up-to 2.6× more efficient than the
conventional algorithm. For the larger segment of two bytes in size (it means S =
16), the proposed algorithm is up-to 4.6× more efficient than the conventional
algorithm. In our future work, we want to develop fast encoding algorithms for
other universal codes like Elias-delta [5], Fibonacci code of order 3 [1], and so
on.

References

1. A. Apostolico and A. Fraenkel. Robust Transmission of Unbounded Strings Using
Fibonacci Representations. IEEE Transactions on Information Theory, 33(2):238–
245, 1987.

2. R. Bača, J. Walder, M. Pawlas, and M. Krátký. Benchmarking the Compres-
sion of XML Node Streams. In Proceedings of the BenchmarX 2010 International
Workshop, DASFAA, Accepted. Springer-Verlag, 2010.

3. T. C. Bell and I. H. Witten. Text Compression. Prentice Hall, 1990.

Fast Fibonacci Encoding Algorithm 83

4. R. A. Dunlap. The Golden Ratio and Fibonacci Numbers. World Scientific Pub-
lishing Co. Pte. Ltd., 1997.

5. P. Elias. Universal Codeword Sets and Representations of the Integers. IEEE
Transactions on Information Theory, IT-21(2):194–203, 1975.

6. J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations and Indexes.
In Proceedings of the 14th International Conference on Data Engineering, ICDE
1998, page 370, Los Alamitos, CA, USA, 1998. IEEE Computer Society.

7. S. T. Klein. Fast Decoding of Fibonacci Encoded Texts. In Proceedings of the
International Data Compression Conference, DCC’07, page 388, Washington, DC,
USA, 2007. IEEE Computer Society.

8. S. T. Klein and M. K. Ben-Nissan. Using Fibonacci Compression Codes as Al-
ternatives to Dense Codes. In Proceedings of the International Data Compression
Conference, DCC’08, pages 472–481, Washington, DC, USA, 2008. IEEE Com-
puter Society.

9. S. T. Klein and M. K. Ben-Nissan. On the Usefulness of Fibonacci Compression
Codes. Accepted in Computer Journal, 2009, 2009.

10. Leonardo of Pisa (known as Fibonacci). Liber Abaci. 1202.
11. M. Livio. The Golden Ratio: The Story of Phi, the World’s Most Astonishing

Number. Broadway, January 2003.
12. H. Plantinga. An Asymmetric, Semi-adaptive Text Compression Algorithm. In

Proceedings of the International Data Compression Conference, DCC 1994. IEEE
Computer Society, 1994.

13. D. Salomon. Data Compression The Complete Reference. Third Edition, Springer–
Verlag, New York, 2004.

14. D. Salomon. Variable-length Codes for Data Compression. Springer-Verlag, 2007.
15. H. Samet. Data Structures for Quadtree Approximation and Compression. Com-

munications of the ACM archive, 28(9):973–993, September 1985.
16. J. Walder, M. Krátký, and R. Bača. Benchmarking Coding Algorithms for the

R-tree Compression. In Proceedings of the Dateso 2009 Annual International
Workshop on Databases, Texts, Specifications and Objects, pages 32–43. CEUR
Workshop Proceedings, Volume: 471, 2009.

17. J. Walder, M. Krátký, R. Bača, J. Platoš, and V. Snášel. Fast Decoding Algorithms
for Variable-Lengths Codes. Submitted in Information Science, January, 2010.

18. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes, Compressing and
Indexing Documents and Images, 2nd edition. Morgan Kaufmann, 1999.

iXUPT: Indexing XML Using Path Templates

Tomáš Bartoš and Ján Kasarda

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague, Malostranské nám. 25,

118 00 Prague, Czech Republic
bartt4am@lab.ms.mff.cuni.cz, Jan.Kasarda@mff.cuni.cz

iXUPT: Indexing XML Using Path Templates

Tomáš Bartoš and Ján Kasarda

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague, Malostranské nám. 25,

118 00 Prague, Czech Republic
bartt4am@lab.ms.mff.cuni.cz, Jan.Kasarda@mff.cuni.cz

Abstract. The XML format has become the standard for data exchange
because it is self-describing and it stores not only information but also the
relationships between data. Therefore it is used in very different areas.
To find the right information in an XML file, we need to have a fast and
an effective access to data. Similar to relational databases, we can create
an index in order to speed up the querying for the information. There are
several ways of indexing XML data but previous research showed that
one of the most effective approaches is to index root-to-leaf paths in the
input file. So we took the inspiration from existing path-based indexing
concepts, enhanced those ideas, and created a new native XML indexing
method derived from the combination of existing approaches in order to
improve the evaluation time of regular path expressions in XPath queries.

Keywords: Indexing XML, path-based indexing, path templates, XPath
queries, regular path expressions

1 Introduction

In past few years there has been an expansion of semi-structured data mostly
stored as XML files and used for saving and exchanging information over the
Internet. The simplicity is only one of the factors why the format became so
popular. As more and more files occurred in this format, we wanted to access
the stored data and search for the specific information according to prior criteria.
For this purpose languages such as XPath [19] or XQuery [20] have been created.
They allow searching for elements, attributes, or text values based on either
specific values or regular expressions. If there are multiple conditions in an XPath
query, we can combine them, and we get the regular path expression pattern.

The path expression usually matches several elements in the input XML file
(the result set). The challenge is to find these elements quickly and efficiently,
especially in large files with a high number of elements and with different struc-
tures. One came with an idea of indexing the XML data in order to quickly get
the the results for any query.

No matter which indexing technique we use, if we had an XPath expression,
the most problematic queries would be those with ’//’ (relative paths) or ’*’
(wildcards). These queries match numerous distinct elements and are difficult to
handle compared to expressions with absolute paths only.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 84–95, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

iXUPT: Indexing XML Using Path Templates 85
2 Tomáš Bartoš and Ján Kasarda

In this paper, our goal is to combine the best concepts of existing indexing
methods and enhance them in order to improve the evaluation time of XPath
queries. To achieve this, we make contributions to these areas:

– The previous research showed that indexing paths is one of the effective ways
of indexing XML documents, so we use this approach and we create a new
indexing method based on indexing paths (Section 2).

– Additionally, we combine it with one of the numbering schemes in order to
accelerate the evaluation of XPath regular path expressions (see Section 3).

– Finally we compare the new concept with existing solutions in terms of time
complexity while evaluating sample XPath queries (Section 4).

2 XML Indexing

There are various distinct approaches of indexing XML files. The main difference
between them is that each method focuses on the specific topic such as decreasing
the number of I/O operations [9], converting the XML format into tables in a
relational DBMS to leverage the database engine ([8], [5], [16], [17] or GRIPP
[6]), or relying on the simplicity of numbering schemes and joining elements
(XISS [11] or twig joins [18]). The indexes might be based on a known data
structure, e.g. the Patricia tries [12] are used in [7] or [9], but more often they
use custom structures.

The method of labeling nodes in the tree with numbers might help with
discovering ancestor-descendant (A-D) relationships. Dietz’s numbering scheme
[1] inspired us to design our numbering scheme based on intervals that evaluates
A-D relationships in constant time. We found also motivation in XISS for the
decomposition of XPath expressions, producing the intermediate results (called
candidates in our approach), and element joins.

Specializing on paths, the DataGuide [2] handles raw paths and provided the
basis for future path indexing methods such as XDG (Extended DataGuide [4])
or Index Fabric [7].

The interesting work of mapping all root-to-leaf paths into multi-dimensional
points (MDX [3] or UB-trees [10]) influenced us on designing our indexing
method. These concepts try to avoid using structural joins because of their
time complexity compared to indexing paths. We understand the inefficiency of
element-based approaches but we also see the potential slowdown for the multi-
dimensional mapping methods when evaluating queries with multiple wildcards
and relative paths. In this case, the domain used for finding matching tuples
might grow faster.

The aim of the proposed indexing scheme is to follow the multi-dimensional
techniques and leverage the path-based indexing with focus on grouping paths
according to common characteristics, path labels (see Section 2.2). We expect
this idea to eliminate many unsuitable paths and, as the result, to speed up the
evaluation of any query (especially those problematic ones; see Section 3).

86 Tomáš Bartoš, Ján Kasarda
iXUPT: Indexing XML Using Path Templates 3

faculty (0)

contact (1) department (7) department (14) department (15)

address (2) email (5) phone (6)

street (3) city (4)

contact (8)

address (9) fax (13)

street (10) city (11) zip (12)

contact (16)

address (17) fax (19) email (20)

city (18)

Fig. 1. The sample XML file

2.1 Graph-structured data

If we take XML files, they can be easily transformed into oriented graphs.
The elements and attributes correspond to graph nodes and the edges are de-
rived from the parent-child (or element-subelement) relationships. Generally, the
graph might contain loops but if we discard the IDREF attributes, we will get a
tree (see Figure 1). Our approach considers only tree structures as the input. We
also exclude attributes and text values from the indexing and querying methods
and focus primarily on the elements and their relationships. The support for in-
dexing and evaluating attributes is straightforward (any attribute of an element
might be considered as a specific subelement with a specific edge).

Although several various indexing methods exist, the main purpose remains
the same - preprocess the source file and store information that will give fast
response to almost any query. We suggest indexing paths, so we evaluate queries
only on such paths that are common for as many elements from the query as
possible. This method eliminates a lot of paths and elements that will not be in
the result and therefore it improves the querying time.

2.2 Path-based Indexing

First of all, we assign elements in the source file the unique identification numbers
(NodeIDs) and convert the element (tag) names into integers (TagIDs). We prefer
numbers over strings because the comparison of integers is faster than comparing
strings with variable lengths although it brings some memory overhead. We use
the numbering method that assigns a node the NodeID when the corresponding
element is visited for the first time (using the SAX parsing method). The root
has the number 0, while the number of following nodes is always incremented
by 1 (see the sample XML file with element names and NodeIDs in Figure 1).

Next, we store all root-to-leaf paths according to their path labels. When-
ever we reach a leaf node, a new root-to-leaf path occurs, and we store the
Path reference according to its path label. While the Path reference is in-
dicated by the sequence of NodeIDs, the path label is determined by the se-
quence of TagIDs of all nodes on the path from the root to the current (leaf)

iXUPT: Indexing XML Using Path Templates 87
4 Tomáš Bartoš and Ján Kasarda

Table 1. Terms definition and description

Term Description

NodeID The unique node number given by the numbering method.

LastNodeID NodeID of the last visited leaf node in the subtree determined by
the current node.
The interval (NodeID,LastNodeID) covers all subelements.

TagName The name of an element.

TagID The unique number for the TagName. For every new TagName we
assign the next TagID (increased by 1).

Path Label The sequence of TagIDs of the nodes on the path from the root.

Path Prefix The sequence of TagIDs that identifies a prefix of at least one
path.

Path Template ID

(PTID)
The unique number for a path label. The path labels are con-
verted into integers (PTIDs).

Path Reference The sequence of NodeIDs of the nodes on the path from the root.

node. The path label is stored only once but one path label can contain several
Path references. Moreover, we convert the path label into Path Template ID
(PTID) that groups similar Path references together (for the detailed specifi-
cation of used terms see Table 1).

Example 1. If we take the sample XML file from the Figure 1 and we visit a leaf
node fax (13), the Path reference (sequence of NodeIDs) will be (0,7,8,13).
Converting element names ”/faculty/department/contact/fax” to TagIDs, we get
the path label ’/0/7/1/9’. For details about the conversion, see the Table 2(a)
(NodeTags table) and the Section 2.3.

Table 2. Structures with data for the sample XML

(a) NodeTags table

TagName TagID Path Template IDs

faculty 0 {0,1,2,3,4,5,6,7,8,9}
contact 1 {0,1,2,3,4,5,6,7,9}
address 2 {0,1,4,5,6}
street 3 {0,4}
city 4 {1,5}
email 5 {2,9}
phone 6 {3}
department 7 {4,5,6,7,8,9}
zip 8 {6}
fax 9 {7}

(b) Paths table

PTID Path label Path references

0 0/1/2/3 {(0,1,2,3)}
1 0/1/2/4 {(0,1,2,4)}
2 0/1/5 {(0,1,5)}
3 0/1/6 {(0,1,6)}
4 0/7/1/2/3 {(0,7,8,9,10)}
5 0/7/1/2/4 {(0,7,8,9,11);

(0,15,16,17,18)}
6 0/7/1/2/8 {(0,7,8,9,12)}
7 0/7/1/9 {(0,7,8,13);

(0,15,16,19)}
8 0/7 {(0,14)}
9 0/7/1/5 {(0,15,16,20)}

88 Tomáš Bartoš, Ján Kasarda
iXUPT: Indexing XML Using Path Templates 5

2.3 Structures

While we parse the input XML file, we maintain several structures that store the
root-to-leaf paths and other necessary information that we will later use when
we evaluate queries. There are three major data structures: the NodeTags table,
the Paths table, and the PrefixTree. While the first two are more like database
tables, the last one is definitely a tree structure (inspired by a Patricia trie [12]).

NodeTags table. This table provides conversion between the TagName and
the TagID. Furthermore it saves all path template IDs (PTIDs) where the
given TagID appear; see the Table 2(a).

Paths table. This table contains the conversion between the Path label and
the PTID. As mentioned before, a single Path label provides grouping for
several Path references that are also stored here; see the Table 2(b).

Prefix tree. The PrefixTree covers all distinct prefixes of path labels from
the source file. Each node in the tree has the TagID and the path from the
root to a given node represents the path prefix. Nodes also contain all PTIDs
which do have the selected prefix. We use this structure to find all PTIDs to
which a specific NodeID might belong (for details see Section 3).

faculty (0)

contact (1) department (7)

address (2) email (5) phone (6)

street (3) city (4)

contact (1)

address (2) email (5) fax (9)

street (3) city (4) zip (8)

Fig. 2. PrefixTree for the sample XML file

Example 2. If we take the node contact (1) from the sample XML (see Figure
1), it belongs to almost all PTIDs (according to the NodeTags table). And using
the PrefixTree, we find the prefix of ’/0/1’ that matches the PTIDs {0,1,2,3}.
So the chosen node occurs only on paths with these path labels.

3 Evaluating XPath queries

Before we start evaluating an XPath query, we need to parse and prepare the
query. We describe these steps in the following sections in more detail.

iXUPT: Indexing XML Using Path Templates 89
6 Tomáš Bartoš and Ján Kasarda

3.1 Parsing XPath expressions

In the beginning, we convert the string query, that describes a regular path
expression, into the structure that is appropriate for the evaluation. We selected
the graph structure (XPathTree) created by two types of nodes (XPathNodes):
steps and predicates (see the sample queries in Figure 3).

Steps If we divide the path expression into sequence of step expressions, they
will be represented by these nodes.

Predicates We express the further filter expressions by the Predicate nodes.
While the Step nodes cannot be added as subnodes, each node in the tree
might contain one or more Predicate subnodes.

faculty

department

contact

(a)

department

*

email

(b)

faculty

department fax

contact

(c)

Fig. 3. The tree structure of sample queries. The Steps are represented by boxes,
while the Predicates are shown as dashed ellipses. We use oriented edges to de-
termine the forward and reverse axes (the edge leads from an ancestor to a de-
scendant). We also put multiple edges to indicate that the node is generally
a descendant (not necessarily a childnode) The corresponding XPath expressions
are: (a) faculty/department/contact, (b) department//*/email, and (c) fac-
ulty[department]//fax/ancestor::contact

3.2 XPathTree pre-processing

After we parse the XPath expression and create the corresponding XPathTree,
we need to convert the stored element names into TagIDs. While converting, we
check element names whether they exist in the index. If a name does not occur
in the NodeTags table, the result is instantly available because no nodes will be
in the result set and no further evaluation is needed (we suppose all predicates
to co-exist at the same time).

We also assign XPathNodes the integer Order, so we know the order in which
they are visited and evaluated.

90 Tomáš Bartoš, Ján Kasarda
iXUPT: Indexing XML Using Path Templates 7

Algorithm 1 Visit procedure for evaluating a node in the XPathTree
Require: xnode is the current XPathNode in the XPathTree that is being visited
1: xnode.Candidates = GetCandidates()
2: for all (predicate in xnode.Predicates) do
3: Visit(predicate) {recursive call for a predicate}
4: xnode.VoteForCandidateNodes(predicate.Candidates)
5: end for
6: if xnode.HasPredicates then
7: xnode.FilterCandidateNodes()
8: end if
9: if (xnode.IsStepNode) then

10: MergeCandidates (lastNode, xnode)
11: if (xnode.NextStepNode is not null) then
12: Visit(xnode.NextStepNode)
13: end if
14: end if

3.3 XPathTree evaluating

When we build and validate the XPathTree, we can start the evaluation. We
use slightly different evaluating methods according to the type of the current
XPathNode. When traversing the XPathTree, the Step nodes are evaluated with
the top-down approach, while the Predicate nodes are processed in the bottom-
up style (from the lowest level upwards using depth-first search). The reason for
distinct methods is that all predicates must be resolved before we can continue
with the next XPathNode.

The Algorithm 14 describes the procedure that we apply to all XPathNodes.
There are several steps that we need to explain in more detail but the main
principle is that we save candidate nodes (NodeIDs) for each XPathNode we
visit. So the candidate nodes of the last Step node represent the result set.

1. Save candidates
The first step is to save candidate nodes for the current node. We store
them in the table called candidates (line 1). It contains PTIDs, where the
XPathNode occur, with corresponding NodeIDs. Each PTID is stored only
once but one NodeID might be saved for more PTIDs. It is because we focus
later on merging candidates according to PTIDs rather than NodeIDs.
To identify the PTIDs, we try to find the smallest PTID set that is common
for as many XPathNode nodes as possible (using the NodeTags table). For a
predicate node, this means to take PTIDs that are common for XPathNodes
on the path from the last Step node. Because we evaluate predicates bottom-
up, we create the set of PTIDs on the way ”down”. For a Step node we take
the path from the first Step node. This holds only if all axis directions on
the path are the same. If we have an alternating1 XPathNode, it divides the

1 Alternating XPathNode is a node that changes the axis direction (the incoming edge
has different direction than the outgoing edge).

iXUPT: Indexing XML Using Path Templates 91
8 Tomáš Bartoš and Ján Kasarda

XPathNodes on the path into two groups for which the smallest PTID set
must be computed separately. We pre-compute the minimal PTID set for all
corresponding nodes when the first node in a specific group is visited.
When we obtain the minimal PTID set, we use the Paths table to find the
candidate nodes (NodeIDs) according to the Path references for a PTID. If
the TagID does not represent ’*’, we find the positions of the TagID in the
Path label identified by the current PTID. We search only for positions that
are either after (forward axes) or before (reverse axes) the position of the last
node and we take all NodeIDs on those positions from the Path references.
If the TagID reflects ’*’ and the XPathNode does not have any predicates,
we skip it and save the minimal and the maximal number of positions to be
skipped when searching for positions in the next XPathNode. The numbers
are determined by the current axis: (1, 1) for the direct relative (parent,
child), and (1,∞) for other axes (ancestor, descendant).

Example 3. If we take the Query 3 in Figure 3(c), the alternating XPathNode
is the fax node. Therefore the minimal PTID subset can be computed only
for set of nodes {faculty,fax} and {fax,contact}. The candidates for this
XPathNode are shown in Table 3.

Table 3. Candidates table for the fax node in Figure 3(c)

PTID NodeIDs

2 {5}
9 {20}

2. Evaluate predicates and voting
If there are any predicates for the current XPathNode, we need to handle them
before we continue with the next XPathNode. Because predicates give addi-
tional filtering criteria, not all candidate nodes from the current XPathNode’s
candidates will meet the new criteria. Therefore we use voting for candidate
nodes (line 4). Every predicate gives a vote for all candidate nodes in the
current XPathNode’s candidates table (no matter of their PTIDs) that are
reachable from a NodeID stored in the predicate’s candidates. The reacha-
bility is dedicated from the axis type and the NodeIDs. Because we consider
only tree structures, we can use the interval (NodeID,LastNodeID) that is
available to any NodeID to test whether a path between two NodeIDs exists.
The path from a node n1 to a node n2 exists only if

(n2.NodeID > n1.NodeID) and (n2.NodeID ≤ n1.LastNodeID). (1)

3. Filter candidates
Whenever we use the voting mechanism, we need to finalize the candidates.
We call this action filtering candidates (line 7). The candidate nodes that

92 Tomáš Bartoš, Ján Kasarda
iXUPT: Indexing XML Using Path Templates 9

have not received enough votes will be removed. Number of votes needed for
being kept equals the number of predicates that has been included in voting.
After we eliminate unsuitable candidate nodes, we need to update the PTIDs
for the next step. By updating PTIDs we mean find all PTIDs where a NodeID
might occur. If the axis of the next XPathNode has the same direction, we
take the PTIDs only from the smallest PTID set for the current XPathNode.
Otherwise, we need to consider potentially all PTIDs. To take only correct
PTIDs, we use the PrefixTree that determines only such PTIDs in which
the given NodeID might occur. We cannot use only the Paths table because
we will find PTIDs for any NodeID with the same TagName and that produces
bigger set than we need for a specific NodeID. So we use the PrefixTree
instead. The path prefix that we need for navigation in the PrefixTree is
defined by the current NodeID.

4. Merge candidates
If we have two Step XPathNodes, we need to merge their candidate nodes
(line 10). Usually we take the candidates of the last Step XPathNode and
apply the same voting mechanism on the current XPathNode as with pred-
icates. After voting, we automatically filter candidates. The result for the
current XPathNode contains previous candidate nodes that received votes.

4 Experimental results

We implemented the prototype of the iXUPT Index in .NET Framework 2.0
and use the laptop machine with Intel Core Duo processor (1.66GHz), 3GB
main memory, and Windows XP SP2 installed to execute the experiments.

For our experiments, we use XMark [14] (the XML benchmark database)
as the data set. XMark is designed to generate XML documents with multiple
parts meeting various XML approaches (data-centric and document-centric).
Although the generated documents are valid to a specific DTD, we do not use
this schema as the hint for indexing or evaluating.

To acquire the data set, we use the tool xmlgen [22] which is the implementa-
tion of the XMark. We generated several documents with different characteristics
(see the Table 4 for details).

Table 4. Characteristics of the XMark data set

Factor Size [MB] Nodes #Real paths #PTIDs

0.01 1.12 17 132 12 504 338
0.1 11.32 167 865 122 026 422
0.3 34.05 504 498 364 481 434
0.5 56.28 832 911 605 546 434
1 113.06 1 666 315 1 211 774 434

We provide also a comparison between a number of all root-to-leaf paths
and a number of different Path labels (see Figure 4). The reason is that the

iXUPT: Indexing XML Using Path Templates 93
10 Tomáš Bartoš and Ján Kasarda

number of different Path labels is smaller than the number of all paths (and
might have an upper bound). So searching for candidate nodes on common PTIDs
(that uniquely identify Path labels) enhance the speed of the evaluation.

390

410

430

P

T
ID

s

330

350

370

390

12504 122026 364481 605546 1211774

P

T
ID

s

Real paths

Fig. 4. The comparison between the number of real paths and the number of different
Path labels (or PTIDs).

We choose two sample queries according to the given DTD of the generated
documents that will cover as many features and functionality as possible.

1. site/regions/*/item/location
The first query (Q1) is simple, there are no predicates and it uses mostly
direct relatives (the child axis).

2. //regions[europe]/ancestor::*/people//person
This query (Q2) is more complex, there is a predicate, a branching node,
and an alternating node. Furthermore, the second Step node matches several
elements and different axis directions are used.

1000

10000

T
im

e
[m

s]

iXUPT eXist XPN 2.0 Qizx MSSQL

1

10

100

1.12 11.32 34.05 56.28 113.06

T
im

e
[m

s]

File size [MB]

(a) Q1 Results

1000

10000

100000

T
im

e
[m

s]

iXUPT eXist XPN 2.0 Qizx MSSQL

1

10

100

1000

1.12 11.32 34.05 56.28 113.06

T
im

e
[m

s]

File size [MB]

(b) Q2 Results

Fig. 5. The evaluation times for queries Q1 and Q2 in logarithm time scales.

To eliminate any negative effects of the managed code, we present the average
time of 10 subsequent executions for each query. We compare the iXUPT pro-
totype with several other products such as eXist [13], Qizx [23], MS SQL Server

94 Tomáš Bartoš, Ján Kasarda
iXUPT: Indexing XML Using Path Templates 11

2005 [24] (does not provide support for ancestor axis, so the query Q2 was not
executed) or the built-in XPathNavigator in .NET Framework 2.0 (marked as
XPN 2.0). The Figure 5 shows the evaluation times for both queries Q1 and Q2.

We can see the improvements of the query evaluation especially for the first
query in the Figure 5(a). But we understand that the reason might be that
we do not consider the time needed to create the index or that our index is
fundamentally memory-based.

5 Conclusion and future work

In this paper, we have proposed a new XML indexing method based on storing
root-to-leaf paths and grouping them according to common Path labels in or-
der to enhance the evaluation time of regular path expressions in XPath queries.
The experimental results showed that there is an improvement of the evaluation
time in the category of small and medium-sized files. Although handling medium
files is still comparable to other approaches, evaluating large files and complex
queries did not bring the anticipated results.

For the future, there are still several issues in the current prototype that
we would like to improve, such as speeding up the branch queries or optimizing
the tree structure that stores the XPath query before evaluating. Next, we want
to design an optimal structure for saving the iXUPT index to a hard drive.
Furthermore, we would like to provide support for graph-oriented XML files
(not only trees) which means to replace the interval-based path testing with a
more general structure (such as Rho-index [15]). Finally, we aspire to use our
indexing method in the environment of distributed XML processing.

6 Acknowledgments

This research has been partly supported by Czech Science Foundation (GAČR)
project Nr. 201/09/0683, by institutional research plan number MSM0021620838,
and by Czech Science Foundation (GAČR), grant Nr. P202/10/0573.

References

1. Paul F. Dietz: Maintaining a Order in a linked list. Proceedings of the 14th Annual
ACM Symposium on Theory of Computing. San Francisco, California (1982) 122–
127.

2. R. Goldman, J. Widom: DataGuides: Enable query formulation and optimization
in semistructured databases. Proceedings of 23rd International Conference on Very
Large Data Bases. Athens, Greece (1997) 436–445.

3. M. Krátký, R. Bača, V. Snášel: On the Efficient Processing Regular Path Expres-
sions of an Enormous Volumne of XML Data. Lecture Notes in Computer Science,
Vol. 4653. Springer-Verlag, Germany (2007) 1–12.

4. J.M. Bremer, M.Gertz: An Efficient XML Node Identification and Indexing
Scheme. Technical Report CSE-2003-04. Dept. of Computer Science, University
of California at Davis, (2003).

iXUPT: Indexing XML Using Path Templates 95
12 Tomáš Bartoš and Ján Kasarda

5. G.Marks, M.Roantree: Pattern Based Processing of XPath Queries. IDEAS 2008
- International Symposium on Database Engineering and Applications. Coimbra,
Portugal (2008).

6. S. Trißl, U.Leser: Fast and Practical Indexing and Querying of Very Large Graphs.
Proceedings of the 2007 ACM SIGMOD international conference on Management
of data. Beijing, China (2007).

7. B.f. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, M. Shadmon: A Fast Index
for Semistructured Data. Proceedings of the 27th International Conference on Very
Large Data Bases. San Francisco, USA (2001) 341–350.

8. Torsten Grust: Accelerating XPath Location Steps. Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. New York, USA (2002)
109–120.

9. D. Barashev, B. Novikov: Indexing XML to Support Path Expressions. Proc. of
the 6th East European Conf. on Advances in Databases and Information Systems
(ADBIS 2002), Vol. 2: Research Communications. Bratislava, Slovakia (2002) 1–10.

10. M. Krátký, J. Pokorný, V. Snášel: Indexing XML Data with UB-trees. Proc. of
the 6th East European Conf. on Advances in Databases and Information Systems
(ADBIS 2002), Vol. 2: Research Communications. Bratislava, Slovakia (2002) 155–
164.

11. Quanzhong Li, B.Moon: Indexing and Querying XML Data for Regular Path Ex-
pressions. Proceedings of the 27th VLDB Conference. Roma, Italy (2001) 361–370.

12. Donald Knuth: The Art of Computer Programming. Volume III, Sorting and
Searching, Third Edition. Addison Wesley, Reading, MA (1998).

13. Wolfgang Meier: eXist: An Open Source Native XML Database. Lecture Notes in
Computer Science, Vol. 2593/2009. Springer Berlin, Heidelberg (2003) 169–183.

14. A. Schmidt, F. Waas, I. Manolescu, M. Kersten, R. Busse, M.J. Carey: XMark: A
Benchmark for XML Data Management. Proceedings of the 28th VLDB Confer-
ence. Hong Kong, China (2002) 974–985.

15. S. Bartoň, P. Zezula: Rho-index - An Index for Graph Structured Data. 8th In-
ternational Workshop of the DELOS Network of Excellence on Digital Libraries.
Schloss Dagstuhl, Germany (2005) 57–64.

16. M. Yoshikawa, T.Amagasa, T. Shimura and S. Uemura: XRel: a Path-based Ap-
proach to Storage and Retrieval of XML Documents Using Relational Databases.
ACM Transactions on Internet Technology (TOIT). New York, NY, USA (2001)
110–141.

17. Zhiyuan Chen and G.J. Korn and F. Koudas and N. Shanmugasundaram and
J.D. Srivastava: Index Structures for Matching XML Twigs Using Relational Query
Processors, Data & Knowledge Engineering. Amsterdam, The Netherlands (2007)
283–302.

18. Chen, T. and Lu, J. and Ling, T.W.: On Boosting Holism in XML Twig Pattern
Matching Using Structural Indexing Techniques, Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. New York, NY, USA
(2005) 455–466.

19. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20.
20. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery.
21. eXist-db Open Source Native XML Database. http://exist.sourceforge.net.
22. Albrecht Schmidt: xmlgen - The Benchmark Data Generator. http://www.xml-

benchmark.org.
23. Qizx, a fast XML repository and search engine fully supporting XQuery.

http://www.xmlmind.com/qizx.
24. Microsoft SQL Server 2005. http://www.microsoft.com/sqlserver/2005.

Reverse-engineering of XML Schemas:
A Survey?

Jakub Kĺımek and Martin Nečaský

XML Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00 Praha 1
The Czech Republic

{klimek, necasky}@ksi.mff.cuni.cz

Reverse-engineering of XML Schemas:
A Survey?

Jakub Kĺımek and Martin Nečaský

XML Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00 Praha 1
The Czech Republic

{klimek, necasky}@ksi.mff.cuni.cz

Abstract. As approaches to conceptual modeling of XML data become
more popular, a need arises to reverse-engineer existing schemas to the
conceptual models. They make the management of XML schemas easier
as well as provide means for accomplishing integration of various XML
data sources. Some methods for reverse-engineering of XML schemas
have been proposed and in this paper, they are compared using various
criteria such as used XML schema languages, level of user involvement,
number of XML schemas that can be covered by the conceptual model
or support for consecutive XML schema evolution. They are also eval-
uated according to their potential to be used as parts of a system for
management, evolution and integration of XML as a whole.

Keywords: XML, schema, reverse-engineering, conceptual modeling

1 Introduction

Today, XML [27] is a technology used in a wide variety of scenarios, from a
message format used by web services [7] to storage of data in databases [4]. As the
number of possible usages of XML grows, so does the need of easy management
of large numbers of XML data sources and their integration. There we can use
conceptual modeling of XML data. It allows a domain expert to model the
problem domain independently of the implementation (XML in our case) and
then create corresponding XML schemas, which are used to describe a structure
of XML documents.

A common situation today is that a company uses several XML formats
for various purposes and has these formats described by an XML schema. To
ease the process of managing those formats and schemas as they evolve in time,
the company can use a conceptual model such as [1, 2, 15, 16, 19, 23], to which
the schemas would be connected. A problem usually arises when there is a new

? This work was supported in part by the Czech Science Foundation (GAČR), grant
number P202/10/0573.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 96–107, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Reverse-engineering of XML Schemas: A Survey 97

format that should be connected to the conceptual model, as most of the con-
ceptual models do not support this operation well enough. During the process of
connecting the new format to the conceptual model, the model may need to be
extended, if the format contains a concept that was not covered by the model.
A special case of this problem is, when the company does not have a conceptual
model at all, and wants to create it from the schemas which they already have
(they extend an empty model).

Therefore, an important aspect of the approaches used for conceptual mod-
eling of XML data is if and how we can create the model from existing XML
schemas (or connect a new schema to an existing model) and once we have it,
if we can use it for the management of evolution of our set of schemas. The
process of creating a conceptual model from existing XML schemas is what we
call Reverse-engineering of XML schemas.

In this paper, we compare and evaluate approaches for reverse-engineering
of XML schemas according to various criteria, including their usefulness as a
method that can be integrated into a system for management of evolution of
XML schemas.

1.1 Outline

The rest of this paper is structured as follows. In section 2, an introduction to
the frequently used techniques in this area is given. In section 3 we introduce
our framework for evolution and integration of XML schemas, against which the
approaches will be evaluated. Section 4 contains a description of our comparison
criteria. In section 5, we describe approaches to the problem, which reverse-
engineer XML schemas to various user-friendlier models. In section 6, approaches
to reverse-engineering to ontologies are described. In section 7 we summarize our
findings and section 8 concludes.

2 Terms

In this section we provide an introduction to basic techniques used widely in the
area of reverse-engineering of XML schemas.

2.1 XML schemas

In this paper, by XML schema language we mean one of the XML schema
languages such as DTD [27], XML Schema [28], Relax NG [6], Schematron [12]
etc. We state this because sometimes an XML schema gets confused with the
actual XML Schema language.

2.2 Model-Driven Architecture

Model-Driven Architecture (MDA) [17] is a general approach to modeling soft-
ware systems and can be profitably applied to data modeling as well. MDA

98 Jakub Kĺımek, Martin Nečaský

distinguishes several types of models that are used for modeling at different
levels of abstraction. For this paper, two types of models are important. A
Platform-Independent Model (PIM) allows modeling data at the conceptual level.
A PIM diagram is abstracted from a representation of the data in concrete data
models such as relational or XML. A Platform-Specific Model (PSM) models
how the data is represented in a target data model. For each target data model
(such as XML), we need a special PSM that is able to capture its implementation
details. A PSM diagram then models a representation of the problem domain in
this particular target data model, it provides a mapping between the conceptual
diagram and a target data model schema.

2.3 UML class diagrams

A large number of approaches to reverse-engineering use UML class diagrams
as a PIM. Basically, it consists of classes representing concepts, associations
representing relations and attributes of classes, representing properties of the
concepts. For a more detailed description see [21, 22].

2.4 Schema matching

Most of the reverse engineering approaches use some methods of schema match-
ing. They include string comparisons, data type compatibility measurements,
structural similarity measurements and linguistic resources like thesauri and
dictionaries. These methods are surveyed in detail in [26, 10]. There is one ma-
jor difference between XML schema matching and reverse-engineering of XML
schemas to conceptual models. XML schema matching usually works with two
different XML schemas (written in XML schema languages) and the goal is to
find mappings of components of one schema to the components of the second
schema. On the other hand, reverse-engineering of XML schemas works with
one XML schema and optionally a conceptual model. The goal is either to cre-
ate the conceptual model when there is none, or to find appropriate mappings
of the XML schema components to the components of the model, which can be
written in e.g. UML, and therefore is of a whole different type.

3 Framework for evolution and integration of
XML schemas

In this section, we introduce our framework for evolution and integration of
XML schemas. It comprises six levels, each representing a different view of an
XML system and its evolution. The framework is depicted in Figure 1. The lowest
level, called extensional level, represents XML documents. Its parent level, called
operational level, represents operations over XML documents, i.e. XML queries.
The level above is called schema level and represents XML schemas that describe
the structure of the XML documents.

Reverse-engineering of XML Schemas: A Survey 99

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema 1

PSM diagram 1

PIM diagram

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema i

(DTD, XML Schema, Relax NG, …)

PSM diagram i PSM diagram n.

Platform-Independent

Level

Platform-Specific

Level

Schema

Level

Operational

Level

Extensional

Level

. . .

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema n

Ontology

Level
Ontology

Fig. 1. Six-level XML evolution and integration framework

The platform-independent and platform-specific levels follow MDA [17] which
is based on modeling the problem domain on different levels of abstraction.
The platform-independent level represents the whole problem domain. It con-
sists of a conceptual model that specifies the problem domain independently
of its representation in the XML formats below. We call the conceptual model
a platform-independent model (PIM) of the problem domain. The level below,
called platform-specific level, represents mappings of the problem domain to par-
ticular XML formats. For each XML format it comprises a model of mapping
of a selected part of the PIM to XML element and attribute declarations. We
call this model platform-specific model (PSM) of the selected XML format. Re-
cently, a number of approaches translating XML schemas to an ontology have
appeared. The ontology level is the topmost in our framework.

In our framework, components in documents on individual levels can be for-
mally binded with components in documents on the neighboring levels. These
bindings can then be used for evolution of the conceptual model, XML schemas,
XML documents and queries. They provide means for automatic detection of all
the places on all the levels where a single change has an impact.

4 Comparison criteria

We will firstly introduce several criteria which we will later use to compare
current approaches to reverse-engineering of XML schemas. In particular, we
will focus on the following criteria:

1. Target model - on what level of our framework does the target model of
the reverse-engineering method belong. This criterion is important, because
lots of methods only visualize the XML schema in another model (e.g. UML

100 Jakub Kĺımek, Martin Nečaský

class diagrams) and therefore their target is on the platform-specific level
(it is a PSM in our framework). A true conceptual model on the platform-
independent level (a PIM in our framework) should be independent of the
target implementation completely. If it is a conceptual model bent for a
specific implementation, it is in fact a PSM. Recently, some approaches to
mapping an XML schema directly to an ontology (the top level of our frame-
work) have appeared. This criterion distinguishes among these three types
of target models.

2. Number of schemas supported by the model - whether the method is limited
to only one schema, or whether it can reverse-engineer multiple schemas to
one model. This is also very important, because to be able to manage a set
of XML schemas, it is not enough to have a separate model for each schema.
We need all the schemas to be related to one model.

3. XML schema languages supported - DTD, XML Schema, Relax NG, Schema-
tron, etc. As can be seen from our framework, the conceptual model can be
and should be independent of the actual XML schema language used on the
schema level, because the target data model (which a PSM should represent)
is XML itself, not a specific XML schema language.

4. Mapping to an existing model - whether the method can map a schema to
an already existing model or whether it can only generate a new model.
This criterion is paramount for evaluating the possibility of integrating an
approach to a bigger system for evolution and integration of XML schemas.
If it only can create a new model for each input, it cannot be used if we
already have the model and only want to add a new XML schema to the
system.

5. Level of user involvement - methods can be automatic or semi-automatic (re-
lying on human intervention). It is impossible to infer a conceptual diagram
automatically, as so far only a human can determine if two objects represent
the same concept. And because we need an exact and reliable match, if we
want to use an approach as a part of a system for integration of XML data,
we can not rely on an automatic translation (mapping) and we need the user
to at least confirm a match.

6. Evolution support - whether the approach is a part of a system that also
supports evolving the schema once it is integrated into the system (when the
system changes). This criterion indicates, whether the method is developed
by itself, or if it already is a part of a system that also helps with the
evolution of the mapped schemas (e.g. by preserving the bindings between
levels of our framework)

5 Approaches to mapping to user-friendly models

In this section we evaluate different approaches to reverse-engineering of XML
schemas to various more user-friendly models.

Reverse-engineering of XML Schemas: A Survey 101

5.1 Yang Weidong et al.

In [31], there is an algorithm for automatic generation of UML class diagrams
(PIMs in our framework) from DTDs according to MDA using a DTD graph
as a PSM. The authors also claim that they can generate UML class diagrams
from XSDs, but the prototype implementation is not freely available, so it can-
not be verified. The main drawback of this approach is that it only serves as
an automatic translator from DTD to UML meant to make the schema more
understandable to people who do not know DTD or XML Schema.

This approach does not support mapping of multiple XML schemas to the
PIM and it does not preserve any mappings between the PIM and the PSM nor
between the PSM and the DTD. It is automatic, limited to DTD only and it
cannot map a schema to an existing model. The bright side is that it actually
uses both PIM and PSM correctly.

5.2 Mikael R. Jensen et al.

In [13], another method of automatic conversion of DTDs to UML class diagrams
is presented. Again, it is meant for easier browsing of XML data available on the
Internet and to ease the work of a data integrator. In contrast with the previous
method, the UML diagrams reflect the structure of the DTD an therefore are
only on the PSM level.

This approach does not support mapping of multiple XML schemas and it
does not preserve any mappings between the PSM and the DTD. It is automatic,
limited to DTD only and it cannot map a schema to an existing model.

5.3 DIXSE framework

In [25], a semi-automatic method of deriving a semantic model from several
DTDs is presented. By default, for each element of every DTD a new element
is created in the model. This process is done automatically. If the user wants to
create a more meaningful model (e.g. wants all Address elements to be mapped
to one element of the model), a rule written in their DIXml language extending
the element in the DTD must be created manually. The model is a PSM as it
still preserves the DTD structure. It uses the Telos [18] metamodeling language.

This approach supports semi-automatic mapping of multiple schemas to a
conceptual model, but it does not preserve any mappings between the PSM and
the DTDs and it is limited to DTD only. It can map a new DTD to an existing
model.

5.4 Xyleme

In [24], a project called Xyleme is described. Its focus is to provide a unified view
of a large number of heterogeneous XML documents described by DTDs. This en-
ables the user to perform queries on one unified model (called an abstract DTD),

102 Jakub Kĺımek, Martin Nečaský

to which all the other DTDs describing the XML documents are mapped au-
tomatically. The methods for discovery of mappings are mainly language based
(thesauri, discovery of synonyms, abbreviations, etc.). A semi-automatic pro-
totype implementation called SAMAG was used to evaluate the approach. In
SAMAG, a user needs to validate each syntactic relationship detected.

This approach supports semi-automatic mapping of multiple schemas to a
model which is a PSM. It preserves no mapping between the PSM and the
DTDs. It is limited to DTD only.

5.5 XTM - XML Tree Model

In [9], a conceptual model for XML called XTM - XML Tree Model is proposed,
including an algorithm for reverse-engineering of XML Schema into XTM. It
also has a strong theoretical background. However, it is still only a PSM in our
framework.

This approach automatically visualizes one schema at a time, is limited to
XML Schema and does not maintain any mappings between the PSM and the
schemas.

5.6 Nečaský

In [20], a complex approach to the process of reverse engineering of XML schemas
to a conceptual model is presented. The model follows MDA as it uses UML class
diagrams as a PIM and their extension as PSMs. It is further described in [19].
Because the model has two levels, the process is divided into two parts. The
first part is an automatic translation of an XML schema to a PSM. The PSMs
are, however, independent of any specific XML schema language; the approach
is presented using XML Schema. The second part is a semi-automatic algorithm
for the reconstruction of mappings between the PSM and a PIM, but it has
some drawbacks. The most problematic one is the computational cost which is
up to mn, where m is a maximum number of outgoing PIM associations from one
PIM class and n is the number of PIM classes in the model. Therefore in practice,
the algorithm will not work if the PIM diagram contains a bigger number of
associations. Nevertheless, the algorithm uses maximum of information that we
can get from a PSM and thus can offer the best results. An implementation in an
experimental stage is available in the development version of XCase [14], which
is a tool implementing the conceptual model and its evolution.

This approach supports semi-automatic reverse-engineering to PSMs and to a
PIM. It supports multiple schemas, is independent of any specific XML schema
language and it can also map to an existing conceptual model. It maintains
mappings between the PIM and the PSM and therefore support further schema
evolution.

Reverse-engineering of XML Schemas: A Survey 103

6 Approaches to mapping to ontologies

Recently, a number of methods of reverse-engineering of XML schemas to on-
tologies have appeared. The main difference between a PIM and an ontology is
that ontologies are more expressive, as the relations they capture can be more
complex and they may even involve logical formulae. A frequent language for
ontologies is OWL [30].

6.1 Canonic Conceptual Models (CCMs)

In [8], a method for integration of XML schemas into an ontology is presented.
At first, each input DTD is semi-automatically transformed into a so called CCM
- Canonic Conceptual Model. It combines the ER [5] and ORM [11] models. A
default transformation is made and a user is then allowed to make adjustments
where needed. The CCMs are PSMs in our framework. Then, each CCM is in-
tegrated (again semi-automatically - user has to verify/adjust) to form the final
ontology. The mappings between the individual CCM components and the com-
ponents of the ontology are preserved. Although the authors call it an ontology,
it is in fact more of a conceptual diagram - a PIM in our framework, because
it still is a CCM, only independent of the XML structure. This method only
provides a unified view of the integrated data so far. No implementation was
mentioned.

This approach supports semi-automatic mapping of multiple DTDs to corre-
sponding PSMs and to a PIM. It is restricted to DTD only. It preserves mappings
between PSMs and a PIM.

6.2 Xiao et al.

In [32], an algorithm is proposed to match given XML document elements to
given ontology concepts to achieve an integrated view of multiple XML docu-
ments, when matched to the same ontology. It is based on automatic structural
matching of a DTD tree to an ontology tree. However, a precondition is that
a domain expert has provided a table of synonyms, i.e. a list of semantically
matching strings from the DTD and from the ontology (which seems to be a
strong precondition).

This in fact semi-automatic approach maps multiple DTDs, it is limited to
DTD only and it does not preserve any mappings between the DTDs and the
ontology. It can only map to an existing ontology.

6.3 Bedini et al.

In [3], a general architecture of building ontologies from XML schemas is pre-
sented. However, no specific methods are suggested, only a sequence of tasks
that a tool for ontology building should follow and also a set of rules according
to which concepts and their relations can be extracted from a XML Schema.

104 Jakub Kĺımek, Martin Nečaský

The general architecture takes the need for consecutive schema evolution into
account. A semi-automatic prototype implementation called Janus is presented
briefly. It requires human assistance for merging of similar concepts and it does
not preserve any mappings between the schemas and the ontology.

This approach is semi-automatic, it is limited to XML schema and it does
not preserve any mappings between the schemas and the ontology. It also only
creates new ontologies.

6.4 DTD2OWL

In [29], a method of automatic translation of DTD to OWL ontology is suggested.
In addition, this method transforms the actual XML documents into OWL in-
dividuals. The authors suggest that the whole web should be transformed this
way. This method is pure translation of one DTD to one OWL ontology with no
support for schema evolution nor conceptual modeling.

This approach is automatic, it is limited to DTD and it can only map one
DTD to one new ontology, not preserving any mappings.

7 Summary

In this section, a brief summary of evaluated approaches and the comparison
criteria is given.

Model Schemas Languages Automatic Maps to Evolution

5.1 PSM One DTD Yes New No

5.2 PSM One DTD Yes New No

5.3 PSM Multiple DTD No New, Existing No

5.4 PSM Multiple DTD Yes New, Existing No

5.5 PSM One XSD Yes New No

5.6 PIM Multiple Anya No New, Existing Yes

6.1 PIM Multiple DTD No New, Existing Yes

6.2 O Multiple DTD No Existing No

6.3 O Multiple XSD No New No

6.4 O One DTD Yes New No

a This method is not limited to any XML schema language. Currently implemented
for XML Schema

Table 1. Overview of approaches according to various criteria

Let us review the comparison criteria used (the columns in Table 1 correspond
to them):

1. Whether the target of the approach is a PIM, PSM or an ontology

Reverse-engineering of XML Schemas: A Survey 105

2. Whether the approach is limited to only one schema or whether it can handle
multiple schemas

3. Which XML schema languages can the approach handle
4. Whether the method is a pure automatic translation or whether the process

is semi-automatic - a user is involved
5. Whether the method creates a new target model or whether it can use an

existing one
6. Whether the method preserves mappings between the schemas and the target

model, which can be used for consecutive schema evolution

The best suitable method for our intention of creating a system for management
of XML schema evolution and integration is 5.6. However, it has some issues with
computational complexity, which need to be resolved before its implementation.

8 Conclusion

In this paper, we have compared and evaluated several approaches for reverse-
engineering of XML schemas according to given comparison criteria. Among
them, only one was well suited for being a part of a larger system for evolution
and integration of XML schemas. Also, this survey showed a severe lack of sup-
port for newer XML schema languages like Relax NG or Schematron in the area
of conceptual modeling of XML and reverse-engineering of XML schemas.

References

1. R. Al-Kamha, D. W. Embley, and S. W. Liddle. Augmenting Traditional Concep-
tual Models to Accommodate XML Structural Constructs. In Proceedings of 26th
International Conference on Conceptual Modeling, pages 518–533, Auckland, New
Zealand, Nov. 2007. Springer.

2. A. Badia. Conceptual Modeling for Semistructured Data. In Proceedings of the 3rd
International Conference on Web Information Systems Engineering Workshops,
pages 170–177, Singapore, Dec. 2002. IEEE Computer Society.

3. I. Bedini, G. Gardarin, and B. Nguyen. Deriving Ontologies from XML Schema.
CoRR, abs/1001.4901, 2010.

4. R. Bourret. XML and Databases. September 2005. http://www.rpbourret.com/

xml/XMLAndDatabases.htm.
5. P. Chen. The Entity-Relationship Model–Toward a Unified View of Data. ACM

Transactions on Database Systems, 1(1):9–36, Mar. 1976.
6. J. Clark and M. Makoto. RELAX NG Specification. Oasis, December 2001. http:

//www.oasis-open.org/committees/relax-ng/spec-20011203.html.
7. D. Booth, C. K. Liu. Web Services Description Language (WSDL) Version 2.0

Part 0: Primer. W3C, June 2007. http://www.w3.org/TR/wsdl20-primer/.
8. R. dos Santos Mello and C. A. Heuser. A Bottom-Up Approach for Integration of

XML Sources. In Workshop on Information Integration on the Web, pages 118–124,
2001.

9. J. Fong, S. K. Cheung, and H. Shiu. The XML Tree Model - toward an XML
conceptual schema reversed from XML Schema Definition. Data Knowl. Eng.,
64(3):624–661, 2008.

106 Jakub Kĺımek, Martin Nečaský

10. H. Hai, Do. Schema Matching and Mapping-based Data Integration: Architecture,
Approaches and Evaluation. VDM Verlag, Saarbrücken, Germany, Germany, 2007.

11. T. Halpin and T. Morgan. Information Modeling and Relational Databases. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

12. ISO. Information Technology Document Schema Definition Languages (DSDL)
Part 3: Rule-based Validation Schematron. ISO/IEC 19757-3, feb 2005.

13. M. R. Jensen, T. H. Møller, and T. B. Pedersen. Converting XML Data to UML
Diagrams For Conceptual Data Integration. In In: 1st International Workshop on
Data Integration over the Web (DIWeb) at 13th Conference on Advanced Informa-
tion Systems Engineering (CAISE01), 2001.

14. J. Kĺımek, L. Kopenec, P. Loupal, and J. Malý. XCase - A Tool for Conceptual
XML Data Modeling. In Advances in Databases and Information Systems, volume
5968/2010 of Lecture Notes in Computer Science, pages 96–103. Springer Berlin /
Heidelberg, March 2010.

15. B. Loscio, A. Salgado, and L. Galvao. Conceptual Modeling of XML Schemas. In
Proceedings of the Fifth ACM CIKM International Workshop on Web Information
and Data Management, pages 102–105, New Orleans, USA, Nov. 2003.

16. M. Mani. Erex: A conceptual model for xml. In Proceedings of the Second Inter-
national XML Database Symposium, pages 128–142, Toronto, Canada, Aug. 2004.

17. J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group,
2003. http://www.omg.org/docs/omg/03-06-01.pdf.

18. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: representing
knowledge about information systems. ACM Trans. Inf. Syst., 8(4):325–362, 1990.

19. M. Nečaský. Conceptual Modeling for XML, volume 99 of Dissertations in Database
and Information Systems Series. IOS Press/AKA Verlag, January 2009.

20. M. Nečaský. Reverse Engineering of XML Schemas to Conceptual Diagrams. In
Proceedings of The Sixth Asia-Pacific Conference on Conceptual Modelling, pages
117–128, Wellington, New Zealand, January 2009. Australian Computer Society.

21. Object Management Group. UML Infrastructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.

22. Object Management Group. UML Superstructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

23. G. Psaila. ERX: A Conceptual Model for XML Documents. In Proceedings of the
2000 ACM Symposium on Applied Computing, pages 898–903, Como, Italy, Mar.
2000. ACM.

24. C. Reynaud, J.-P. Sirot, and D. Vodislav. Semantic integration of xml hetero-
geneous data sources. In IDEAS ’01: Proceedings of the International Database
Engineering & Applications Symposium, pages 199–208, Washington, DC, USA,
2001. IEEE Computer Society.

25. P. Rodŕıguez-Gianolli and J. Mylopoulos. A Semantic Approach to XML-based
Data Integration. In ER ’01: Proceedings of the 20th International Conference on
Conceptual Modeling, pages 117–132, London, UK, 2001. Springer-Verlag.

26. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Jour-
nal on Data Semantics, 4:146–171, 2005.

27. T. Bray and J. Paoli and C. M. Sperberg-McQueen and E. Maler and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C, September 2006.
http://www.w3.org/TR/REC-xml/.

28. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C, October 2004. http://www.w3.org/TR/

xmlschema-1/.

Reverse-engineering of XML Schemas: A Survey 107

29. P. T. T. Thuy, Y.-K. Lee, and S. Lee. DTD2OWL: Automatic Transforming XML
Documents into OWL Ontology. In ICIS ’09: Proceedings of the 2nd International
Conference on Interaction Sciences, pages 125–131, New York, NY, USA, 2009.
ACM.

30. W3C OWL Working Group. OWL 2 Web Ontology Language. W3C, October
2009. http://www.w3.org/TR/owl2-overview/.

31. Y. Weidong, G. Ning, and S. Baile. Reverse Engineering XML. Computer and
Computational Sciences, International Multi-Symposiums on, 2:447–454, 2006.

32. L. Xiao, L. Zhang, G. Huang, and B. Shi. Automatic Mapping from XML Doc-
uments to Ontologies. In CIT ’04: Proceedings of the The Fourth International
Conference on Computer and Information Technology, pages 321–325, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

Evolving Quasigroups by Genetic Algorithms?

Václav Snášel1, Jǐŕı Dvorský1, Elǐska Ochodková1, Pavel Krömer1, Jan Platoš1,
and Ajith Abraham2

1 Department of Computer Science, FEECS, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
{vaclav.snasel,jiri.dvorsky,eliska.ochodkova,

pavel.kromer,jan.platos}@vsb.cz
2 Center of Excellence for Quantifiable

Quality of Service, Norwegian University of Science and Technology
O.S. Bragstads plass 2E,

N-7491 Trondheim, Norway
ajith.abraham@ieee.org

Evolving Quasigroups by Genetic Algorithms

Václav Snášel1, Jǐŕı Dvorský1, Elǐska Ochodková1,
Pavel Krömer1, Jan Platoš1, Ajith Abraham2

1 Department of Computer Science
Faculty of Electrical Engineering and Computer Science

VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
{vaclav.snasel,jiri.dvorsky,eliska.ochodkova,

pavel.kromer,jan.platos}@vsb.cz
2 Center of Excellence for Quantifiable

Quality of Service, Norwegian
University of Science and Technology

O.S. Bragstads plass 2E,
N-7491 Trondheim, Norway
ajith.abraham@ieee.org

Abstract. Quasigroups are a well-known combinatorial design equiva-
lent to more familiar Latin squares. Because all possible elements of a
quasigroup occur with equal probability, it makes it an interesting tool
for the application in computer security and for production of pseudo-
random sequences. Most implementations of quasigroups are based on
look-up table of the quasigroup, on system of distinct representatives
etc. Such representations are infeasible for large quasigroups. An ana-
lytic quasigroup is a recent concept that allows usage of certain quasi-
groups without the need of look-up table. The concept of isotopy enables
consideration of many quasigroups and genetic algorithms allow efficient
search for good ones. In this paper we describe analytic quasigroup and
genetic algorithms for its optimization.

1 Introduction

Random and pseudorandom sequences can be used in many applications, e.g. in
modeling, simulations, and of course in cryptography. Pseudorandom sequences
are the core of stream ciphers. The design goal in stream ciphers is to efficiently
produce pseudorandom sequences - keystreams (i.e. sequences that possess prop-
erties common to truly random sequences and in some sense are ”indistinguish-
able” from these sequences).

The use of quasigroups and quasigroup string transformations is a recent
but successful tendency in cryptography and coding [12]. With quasigroups in
the hearth of advanced cryptosystems and hash functions, a need to find good
quasigroups becomes hot topic.

Quasigroups and its applications in computer security were studied e. g. in [2].
A design of pseudorandom sequence generator (PRSG) based on quasigroup op-
eration was presented in [3]. The authors have performed an extensive analysis of

? This paper was partially supported by GACR 205/09/1079 grant.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 108–117, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Evolving Quasigroups by Genetic Algorithms 109

216 randomly chosen quasigroups of the orders 5, 6, 7, 8, 9 and 10 and concluded
that different quasigroups produce pseudorandom sequences with different pe-
riod (i.e. the number of elements after which the pseudorandom sequence starts
to repeat). They have show that only a small number of quasigroups feature very
large value of coefficient of period growth, a property that significantly affects the
period of generated pseudorandom sequence [3]. This results encourage research
of efficient methods for search for good quasigroups in the field of pseudorandom
generators and cryptography.

Genetic algorithms are probably the most popular and wide spread mem-
ber of the class of evolutionary algorithms (EA). EAs operate with a popula-
tion of artificial individuals (chromosomes) encoding potential problem solutions.
Encoded individuals are evaluated using a carefully selected objective function
which assigns a fitness value to each individual. The fitness value represents the
quality (relative ranking) of each individual as a solution to given problem. Com-
peting individuals explore in a highly parallel manner problem domain towards
an optimal solution [16].

2 Quasigroups

Definition 1. A quasigroup is a pair (Q, ◦), where ◦ is a binary operation on
(finite) set Q such that for all not necessarily distinct a, b ∈ Q, the equations

a ◦ x = b and y ◦ a = b.

have unique solutions.

The fact that the solutions are unique guarantees that no element occurs
twice in any row or column of the table for (◦). However, in general, the operation
(◦) is neither a commutative nor an associative operation.

Quasigroups are equivalent to more familiar Latin squares. The multiplica-
tion table of a quasigroup of order q is a Latin square of order q, and conversely,
as it was indicated in [4,5,18], every Latin square of order q is the multiplication
table of a quasigroup of order q.

Definition 2. Let A = {a1, a2, . . . , an} be a finite alphabet, a n×n Latin square
L is a matrix with entries lij ∈ A, i, j = 1, 2, . . . , n, such that each row and each
column consists of different elements of A.

For i, j, k ∈ A the ordered triple (i, j; k) is used to represent the occurrence of
element k in cell (i, j) of the Latin square. So a Latin square may be represented
by the set {(i, j; k)| entry k occurs in cell (i, j) of the Latin square L.}

All reduced Latin squares of order n are enumerated for n ≤ 11 [14]. Let Ln

be the number of Latin squares of order n, and let Rn be the number of reduced
Latin squares of order n. It can be easily seen that

110 V. Snášel, J. Dvorský, E. Ochodková, P. Krömer, J. Platoš, A. Abraham

Ln = n!(n− 1)!Rn.

Number of distinct Latin squares of a given order grows exceedingly quickly
with the order and there is no known easily-computable formula for the number
of distinct Latin squares. The problem of classification and exact enumeration
of Latin squares of order greater than 11 probably still remains unsolved. Thus,
there are more than 1090 quasigroups of order 16 and if we take an alphabet L =
{0 . . . 255} (i.e. data are represented by 8 bits) there are at least 256!255! . . . 2! >
1058000 quasigroups.

Multiplication in quasigroups has an important property; it is proven that
each element occurs exactly q times among the products of two elements of Q,
q2 times among the products of three elements of Q and, generally qt−1 among
the products of t elements of Q. Since there are qt possible ordered products of
t elements of Q, this shows that each element occurs equally often among these
qt products (see [6]).

2.1 Isotopism of quasigroups

Definition 3. Let (G, ·), (H, ◦) be two quasigroups. An ordered triple (π, ρ, ω)
of bijections π, ρ, ω of the set G onto set H is called an isotopism of (G, ·) upon
(H, ◦) if ∀u, v ∈ G, π(u) ◦ ρ(v) = ω(u · v). Quasigroups (G, ·), (H, ◦) are said to
be isotopic.

We can imagine an isotopism of quasigroups as a permutation of rows and
columns of quasigroup’s multiplication table.

Example 1. Consider a multiplication table for a quasigroup isotopic to the
quasigroup of modular subtraction, with operation ◦ defined as a ◦ b = (a +
n− b) mod n):

◦ 0 1 2 3
0 0 3 2 1
1 2 1 0 3
2 1 0 3 2
3 3 2 1 0

The table was created from table of modular subtraction. The second and the
third rows were exchanged. Permutations π, ρ were identities and ω = [0213]. A
multiplication in this quasigroup can be illustrated by e.g. 1 ◦ 0 = ω(1) ◦ 0 =
2 ◦ 0 = 2.

Starting with the quasigroup of modular subtraction, we can explore a large
class of quasigroups isotopic to the quasigroup of modular subtraction [7,17].
This allows us to utilize quasigroups with very large number of elements without

Evolving Quasigroups by Genetic Algorithms 111

the necessity of their storage in program memory. The multiplication in such
isotopic quasigroup is defined as follows:

a ◦ b = π−1((ω(a) + n− ρ(b)) mod n). (1)

We call the quasigroup defined by its multiplication formula and three se-
lected permutations an analytic quasigroup [11,21].

The notion of analytic quasigroup enables efficient work with large quasi-
groups. Previos studies in this field used mostly quasigroups of small order [10],
or just a small parts of certain quasigroup were utilized e.g. as a key for Message
Authentication Code. Such small quasigroups are represented as look-up tables
in main memory. Larger quasigroup of order 2256 is used by NIST’s SHA-3 com-
petition candidate, hash function EdonR [9].

The properties of one analytic quasigroup isotopic to the quasigroup of mod-
ular subtraction were studied in [11]. The quasigroup was created using three
static functions that divided the sequence of n elements of the quasigroup into
several parts. The parts were rotated in various directions and exchanged among
themselves. It was shown that the investigated quasigroup has some faults in its
properties.

2.2 Constructing quasigroups isotopic to the quasigroup of modular
subtraction

Consider a quasigroup on the length n defined by multiplication a ◦ b = (a+n−
b) mod n). Then three permutations π, ρ, ω must be chosen in order to implement
isotopic quasigroup, whose multiplication will be defined by (1).

Obviously, there is n! different permutations of n elements. Because three
independent permutations are used to define any isotopic quasigroup, there are
n!n!n! possible choices of π, ρ and ω. Permutations of elements cannot be sought
for an analytic quasigroup directly, because its elements are not stored in mem-
ory. Instead, the permutation needs to be implemented as a function of an ele-
ment of Q. One way to achieve this goal is the use of bit permutation.

A quasigroup over a set of n elements requires log2(n) bits to express each
element. Each permutation of bits in the element representation represents also
a permutation of all elements of the quasigroup (if n is a power of 2). Bit per-
mutation can be implemented easily as a function of q ∈ Q.

The bit permutation is an elegant way of implementing permutations over n
elements ofQ. Although it enables us to explore only a fragment (log2(n)!log2(n)!
log2(n)!) of all possible permutation triples over the quasigroup of n elements, it
is useful because it does not require all n elements in main memory and therefore
fits into the framework of analytic quasigroups.

Bit permutations are computationaly more expensive than the static func-
tions used to implement permutation in [11]. However, there are ongoing efforts
to implement bit permutation instructions in hardware, which would improve
the performance of the proposed algorithm significantly [8].

112 V. Snášel, J. Dvorský, E. Ochodková, P. Krömer, J. Platoš, A. Abraham

3 Genetic algorithms

Genetic algorithms (GAs) are generic and reusable population-based metaheuris-
tic soft optimization method [16]. GAs operate with a population of chromosomes
encoding potential problem solutions. Encoded individuals are evaluated using
a carefully selected domain specific objective function which assigns a fitness
value to each individual. The fitness value represents the quality of each can-
didate solution in context of the given problem. Competing individuals explore
the problem domain towards an optimal solution [16].

The emulated evolution is driven by iterative application of genetic opera-
tors. Genetic operators algoritmize principles observed in natural evolution. The
crossover operator defines a strategy for the exchange of genetic information
between parents (sexual reproduction of haploid organisms) while the mutation
operator introduces the effect of environment and randomness (random pertur-
bation of genetic information). The basic workflow of the standard generational
GA is shown in algorithm 1.

Algorithm 1: A summary of genetic algorithm
1 Define objective (fitness) function and problem encoding
2 Encode initial population P of possible solutions as fixed length strings
3 Evaluate chromosomes in initial population using objective function
4 while Termination criteria not satisfied do
5 Apply selection operator to select parent chromosomes for

reproduction: sel(Pi) → parent1, sel(Pi) → parent2

6 Apply crossover operator on parents with respect to crossover
probability to produce new chromosomes:
cross(pC, parent1, parent2) → {offspring1, offspring2}

7 Apply mutation operator on offspring chromosomes with respect to
mutation probability: mut(pM, offspring1) → offspring1,
mut(pM, offspring2) → offspring2

8 Create new population from current population and offspring
chromosomes: migrate(offspring1, offsprig2, Pi) → Pi+1

9 end

Many variants of the standard generational GAs have been proposed. The
differences are mostly in particular selection, crossover, mutation and replace-
ment strategy [16].

In the next section, we present genetic algorithm for the search for good
analytic quasigroups. It is an extended version of the initial GA for quasigroup
evolution introduced in [21]. In this study, we introduce a new fitness function
based on associativity and commutativity that is used for quasigroup optimiza-
tion.

Evolving Quasigroups by Genetic Algorithms 113

4 Genetic search for analytic quasigroups

The genetic algorithm for the search for analytic quasigroup is defined by en-
coding of the candidate solutions and fitness function to evaluate chromosomes.

4.1 Encoding

As noted in subsection 2.2, any analytic quasigroup isotopic to quasigroup of
modular subtraction is defined by three permutations. Such permutation triple
represents a problem solution and should be mapped to one GA chromosome.
Permutations can be for the purpose of genetic algorithms encoded using several
strategies. In this study, we use random key encoding.

Random key (RK) encoding is an encoding strategy suitable for problems
involving permutation optimization [19]. In random key encoding, the permu-
tation is represented as a string of real numbers (random keys), whose relative
position changes after sorting corresponds to the permutation index. An example
or random key encoding is shown in (2).

Π5 =
(

0.2 0.3 0.1 0.5 0.4
2 3 1 5 4

)
(2)

To encode a quasigroup (isotopic to the quasigroup of modular subtraction)
of the length n = 2l, we use a vector of 3l real numbers v = (v1, . . . , vl−1,
vl, . . . v2l−1, v2l, . . . , v3l). The vector is interpreted as three concatenated RK
encoded permutations of the length l.

This encoding allows us to use traditional implementations of genetic op-
erators, such as n-point crossover and mutation. Crossover was implemented
as mutual exchange of genes between selected parents and mutation was im-
plemented as a replacement of gene with a uniform random number from the
interval [0, 1].

4.2 Fitness function

The fitness function f we propose in this work is based on commutativity and
associativity in quasigroup.

f(n, na, nc, α) = α
n2 − nc

n2
+ (1− α)

n3 − na

n3
(3)

In (3), n stands for the order of the quasigroup, n2 stands for the number
of all combinations of 2 elements out of n, n3 represents all combinations of
3 elements out of n, nc stands for the number of element pairs that have the
commutativity property and na represents the number of element triples that
have the associativity property. The coefficient α ∈ [0, 1] is used to prioritize
between commutativity and associativity. The value of fitness function is 0 for
nc = n2 and na = n3 at the same time and 1 for nc = 0 and na = 0. Informally,
we can say that it seeks for a quasigroup that has “low associativity“ and “low
commutativity“.

114 V. Snášel, J. Dvorský, E. Ochodková, P. Krömer, J. Platoš, A. Abraham

5 Experimental optimization

We have investigated the associativity and commutativity in randomly gener-
ated quasigroups isotopic to the quasigroup of modular subtraction of orders
32, 64 and 128 respectively. The average values of na, nc and fitness in random
quasigroups are shown in Figure 1.

(a) Average na in random quasigroups
(n3 illustrates the number of all combi-
nations of 3 elements out of n).

(b) Average nc in random quasigroups(n2
illustrates the number of all combinations
of 2 elements out of n).

(c) Average fitness in random quasigroups.
f1 corresponds to n2−nc

n2
, f2 to n3−na

n3
and

f = 0.5f1 + 0.5f2

Fig. 1. Average values of na, nc and fitness in random quasigroups of order 32,
64 and 128.

In the next step, we have performed genetic search for better (in terms of low
associativity and low commutativity) quasigroups isotopic to the quasigroups of
modular subtraction with the dimensions 32, 64 and 128 respectively. We have
implemented genetic algorithm with permutation encoding and fitness function
as defined above. The parameters of the algorithm (α, PM , PC etc.) were selected
after initial tuning of the algorithm. The paramteres are summarized in Table 1.

Beacuse genetic algorithm is a stochastic method, every experiment was re-
peated 10 times and presented results are average values after 10 independent
runs. The values of optimized fitness, nc and na are shown in Table 2. A compar-
ison of optimized values with na, nc and fitness in random quasigroups isotopic

Evolving Quasigroups by Genetic Algorithms 115

Table 1. The settings of genetic algorithm for quasigroup search

Parameter value

Fitness function coefficient α 0.5
Population size 20
Probability of mutation PM 0.02
Probability of recombination PC 0.8
Selection operator elitist
Max number of generations 1000

to the quasigroups of modular subtraction are illustrated in Figure 2. We can
see that in every experiment (for every quasigroup dimension), the genetic opti-
mization process delivered a quasigroup better than random one.

Table 2. Results for average evolved quasigroup of the dimension 32, 64 and
128 respectively.

Property

Dimension nc na fitness

32 4.3 127.9 0.983
64 5 543 0.992
128 24 2593 0.995

6 Conclusions

In this paper was described a genetic algorithm for optimization of an analytic
quasigroup. The genetic algorithm performs a search for good bit permutations
that are then used to construct analytic quasigroups with desired properties.
Both, the analytic quasigroup and bit permutation, do not rely on the lookup
table of the quasigroup stored in memory.

The fitness function we use in this paper is based on associativity and com-
mutativity in quasigroups. It triggers a search for quasigroups that have “low
associativity“ and “low commutativity“. In a numerical experiment, we have
been able to find quasigroups with better properties than random ones have.
The drawback of this method is at this point its computational expensiveness.
In order to evaluate the fitness function, all combinations of 2 elements out of
n and all combinations of 3 elements out of n (quasigroup dimension) have to
be found and evaluated using quasigroup operation ◦. However, the main aim
of this work was to verify that genetic algorithm can evolve quasigroups with
above average properties.

116 V. Snášel, J. Dvorský, E. Ochodková, P. Krömer, J. Platoš, A. Abraham

(a) Average na in optimized quasigroups.
Lower is better.

(b) Average nc in optimized quasigroups.
Lower is better.

(c) Average fitness in optimized quasi-
groups. Higher is better.

Fig. 2. Average values of na, nc and fitness in optimized quasigroups of order
32, 64 and 128 compared with na, nc and fitness in random quasigroups.

In our future work, we want to investigate the properties of generated quasi-
groups, study the fitness function and look for alternative fitness functions. We
want to focus on efficient implementation of used genetic algorithms with the uti-
lization of GPGPU. Moreover, we will investigate other successful computational
intelligence methods for quasigroup optimization (e.g. differential evolution, ant
colony optimization).

References

1. G. Marsaglia and W. W. Tsang, ”Some Difficult-to-pass Tests of Randomness”,
Journal of Statistical Software, volume 7,number i03.

2. S. Markovski, ”Quasigroup String Processing and Applications in Cryptography”,
Proceedings 1st Conference of Mathematics and Informatics for Industry, Thessa-
loniki, Greece, pp. 278–290, 2003.

3. V. Dimitrova, J. Markovski, ”On quasigroup pseudo random sequence generator”,
Proc. of the 1-st Balkan Conference in Informatics, Y.Manolopoulos and P. Spirakis
eds., Thessaloniki, pp. 393–401, Nov 2004.

4. Belousov, V. D. Osnovi teorii kvazigrup i lup (in Russian), Nauka, Moscow, 1967.

Evolving Quasigroups by Genetic Algorithms 117

5. Dénes, J., Keedwell, A. Latin Squares and their Applications. Akadémiai Kiadó,
Budapest; Academic Press, New York (1974)

6. Dénes, J., Keedwell, A. A new authentication scheme based on Latin squares.
Discrete Mathematics (106/107) (1992) pp. 157–161

7. J. Dvorský, E. Ochodková, V. Snášel, Hash Functions Based on Large Quasigroups,
Proceedings of Velikonočńı kryptologie, Brno, 2002, pp. 1–8.

8. Y. Hilewitz, Z. J. Shi, Lee, and R. B., ”Comparing fast implementations of bit
permutation instructions,” in Conference Record of the Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, (Pacific Grove, California, USA),
pp. 1856–1863, Nov. 2004 2004.

9. D. Gligoroski, et al. EdonR cryptographic hash function. Submition to NIST’s
SHA-3 hash function competition, 2008,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

10. D. Gligoroski, S. Markovski, L. Kocarev and J. Svein. The Stream Cipher Edon80.
The eSTREAM Finalists, Lecture Notes in Computer Science, Vol. 4986. pp. 152-
169 , 2008

11. V. Snášel, A. Abraham, J. Dvorský, P. Krömer, and J. Platoš, ”Hash functions
based on large quasigroups.,” in ICCS (1) (G. Allen, J. Nabrzyski, E. Seidel, G. D.
van Albada, J. Dongarra, and P. M. A. Sloot, eds.), vol. 5544 of Lecture Notes in
Computer Science, pp. 521–529, Springer, 2009.

12. S. J. Knapskog, ”New cryptographic primitives,” in CISIM ’08: Proceedings of the
2008 7th Computer Information Systems and Industrial Management Applications,
(Washington, DC, USA), pp. 3–7, IEEE Computer Society, 2008.

13. J. Koza, ”Genetic programming: A paradigm for genetically breeding populations of
computer programs to solve problems,” Technical Report STAN-CS-90-1314, Dept.
of Computer Science, Stanford University, 1990.

14. B. D. McKay and I. M. Wanless. On the Number of Latin Squares. Journal Annals
of Combinatorics, Issue Vol.ume 9 (2005), No. 3, pp. 335-344.

15. R .C. Merkle, Secrecy, authentication, and public key systems. Stanford Ph.D.
thesis 1979, pages 13-15.
http://www.merkle.com/papers/Thesis1979.pdf

16. M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press,
1996.

17. E. Ochodková, V. Snášel, Using Quasigroups for Secure Encoding of File System,
Proceedings of the International Scientific NATO PfP/PWP Conference ”Security
and Information Protection 2001”, May 9-11, 2001, Brno, Czech Republic, pp.175–
181.

18. J. D. H. Smith, An introduction to quasigroups and their representations, Chapman
& Hall/CRC, 2007.

19. L. V. Snyder and M. S. Daskin, ”A random-key genetic algorithm for the gen-
eralized traveling salesman problem,” European Journal of Operational Research,
vol. 174, no. 1, pp. 38–53, 2006.

20. M. Vojvoda. Cryptanalysis of One Hash Function Based on quasigroup. In Con-
ference Mikulášská kryptobeśıdka, pp. 23-28., Praha, 2003.

21. V. Snášel, A. Abraham, J. Dvorský, E. Ochodková, J. Platoš, P. Krömer, Searching
for Quasigroups for Hash Functions with Genetic Algorithms, Proceedings of the
2009 World Congress on Nature & Biologically Inspired Computing, pp. 367 - 372
IEEE Computer Society, 2009.

Using Spectral Clustering for Finding Students’
Patterns of Behavior in Social Networks

Gamila Obadi, Pavla Dráždilová, Jan Martinovič, Kateřina Slaninová, and
Václav Snášel

VŠB - Technical University of Ostrava, FEECS, Department of Computer Science
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

jan.martinovic@vsb.cz, slaninova@opf.slu.cz

Using Spectral Clustering for Finding Students’
Patterns of Behavior in Social Networks

Gamila Obadi, Pavla Dráždilová, Jan Martinovič, Kateřina Slaninová and
Václav Snášel

FEECS, VŠB - Technical University of Ostrava,
Department of Computer Science,

Ostrava, Czech Republic

Abstract. The high dimensionality of the data generated by social net-
works has been a big challenge for researchers. In order to solve the
problems associated with this phenomenon, a number of methods and
techniques were developed. Spectral clustering is a data mining method
used in many applications; in this paper we used this method to find
students’ behavioral patterns performed in an elearning system. In ad-
dition, a software was introduced to allow the user (tutor or researcher)
to define the data dimensions and input values to obtain appropriate
graphs with behavioral pattens that meet his/her needs. Behavioral pat-
terns were compared with students’ study performance and evaluation
with relation to their possible usage in collaborative learning.

1 Introduction

Social networks have been attracting millions of users, where each user is rep-
resented by a huge number of variables. This popularity leads to very high
dimensional data, often with sparse data sets. Researchers, dealing with such
high-dimensional data collections, face many challenges due to the difficulties
with visualization of these data sets and the vast increase in their computing
time or memory complexity. Dimension reduction is the process of reducing the
number of variables describing the data set. This process is possible, because
many of the variables are correlated with each other and many of them have a
variation smaller than the measurement noise and thus will be irrelevant. Re-
searchers approach these high dimensional data sets either by finding a subset
of the original variables or by mapping the multidimensional space into a space
of fewer dimensions. In this work the authors are interested in finding the pat-
terns of behavior of elearning students and the relationship between them and
students academic performance. To solve the problem of higher dimensionality,
spectral clustering was used. Besides, a software was developed to allow the user
(researcher or elearning tutor) to define the data dimensions and input values
for graph generation that meet his/her needs.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 118–130, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Using Spectral Clustering for Finding Students’ Patterns of Behavior . . . 119

2 Finding Patterns in Social Networks

Data mining is the process of extracting patterns from data. Patterns can be
defined as structures that make statements only about restricted regions of the
space spanned by the variables of the data [17]. These structures might represent
Web pages that are all about the same topic or people that socialize together.
The discovery of pattern structures in complex networks is an essential and chal-
lenging task in many disciplines, including business, social science, engineering,
and biology. Therefore researchers have a great interest in this subject and have
been approached it differently through data mining methods, social network
analysis, etc. This diversity is not limited to the techniques used to implement
this task, but it is also applied to its applications. The authors of [18] provided
an overview about the usage of frequent pattern mining techniques for discover-
ing different types of patterns in a Web logs. While in [22] the authors applied
different clustering algorithm to detect crimes patterns, and some data mining
tools were used in [1] to solve the intrusion detection problem.

Social Network Analysis (SNA) is another common method for patterns dis-
covery and has been used in previous studies. The authors in [21] used some
SNA metrics to study the interaction patterns of students in Elearning online
communities. Discovering patterns from email datasets is one of the topics re-
searches are interested in as well. In [8] the authors described a multi-stage spam
filter based on trust and reputation for detecting the spam behavior of the call in
Voice over Internet Protocol (VoIP). Pattern discovery is also used in the inves-
tigation and control of an infectious disease epidemic. A study was conducted to
explore the movements of cattle and sheep during the initial phase of the 2001
Foot and mouth disease (FMD) outbreak in UK to describe and visualize the
network of these movements using social network analysis techniques [25].

Educational data mining (EDM) is a discipline witch concentrates on devel-
oping methods for exploring the data that come from an educational context,
and use these methods to improve the quality of learning. To achieve this objec-
tive a number of studies have been conducted where researchers applied different
data mining techniques to discover the factors that affect the academic perfor-
mance of students. The authors in [4] studied the navigational behavior of the
students to identify the patterns of high performance, in [10] were used decision
trees to Predict Students Drop Out and in [3] authors investigated the Cheating
behavior in Online Student Assessment. Romero and Ventura classified educa-
tional data mining methods into two categories - Statistics and visualization,
and Web mining (Clustering, classification, outliers detection, Association rule
mining and sequential pattern mining, Text mining) [28].

Clustering is a useful method to investigate students’ patterns of behav-
ior, a number of different clustering algorithms have been used to detect online
students’ patterns such as the TwoStep algorithm [4], the model-based cluster-
ing [16], the K-means algorithm [26, 27], etc. In this study, the authors aim to
apply spectral clustering to investigate the correlation between the similarity in
students behavior and their grades. Even though spectral clustering has been
applied to solve many problems in signal processing, bioinformatics and infor-

120 G. Obadi, P. Dráždilová, J. Martinovič, K. Slaninová, V. Snášel

mation retrieval, in the field of educational data mining this method has not
exploited widely yet.

3 Spectral Clustering

Clustering is the process of organizing objects into collections whose members
are similar in some sense. A cluster is therefore a collection of objects which
are similar to each other and are dissimilar to the objects belonging to other
clusters. The task of finding clusters has been the focus of research in machine
learning, information retrieval, social network analysis, etc.

Spectral clustering algorithms cluster a set of data points using the simi-
larity matrix that is derived from the data. It uses the second eigenvector of a
graph’s Laplacian to define a semi-optimal cut of a weighted undirected graph
in which nodes correspond to objects and edges represent the distance (simi-
larity) between the objects. The idea of finding partitions of graphs by using
the eigenvectors of their Laplacians can be traced back to 1970s to Fiedler [14],
Donath [12]. Fiedler associated the second-smallest eigenvalue of the Laplacian
of a graph with its connectivity and suggested partitioning by splitting vertices
according to their value in the corresponding eigenvector. Thus, this eigenvalue
is called Fiedler value and the corresponding vector is called the Fiedler vector.
According to Fiedler, the graphs’s Laplacian has the following spectral proper-
ties:

– All eigenvalues are non-negative.
– If the graph is divided into g components, there are g zero eigenvalues.
– Eigenvector components act like coordinates to represent nodes in space.
– The Fiedler vector has both positive and negative components, their sum

must be zero.
– If the network is connected, but there are two groups of nodes weakly linked

to each other, they can be identified from Fiedler vector. Where the positive
components are assigned to one group and the negative components are
assigned to the other.

Spectral clustering has been studied and applied to solve many problems. In
[19] Kannan et al. developed a natural bicriteria measure for assessing the quality
of clustering. Cheng et al. in [7] showed how to use spectral algorithm studied
in [19]. A practical implementation of the clustering algorithm is presented in [6].
In [11] Ding et al. proposed a new graph partition method based on the min-max
clustering principle: the similarity between two subgraphs (cut set) is minimized,
while the similarity within each subgraph (summation of similarity between all
pairs of nodes within a subgraph) is maximized. Shi and Malik [30] treated image
segmentation as a graph partitioning problem and proposed a global criterion,
the normalized cut, for segmenting this graph. They showed that an efficient
computational technique based on a generalized eigenvalue problem can be used
to optimize this criterion. A recursive algorithm was used in [9], Dasgupta et al.
analyzed the second eigenvector technique of spectral partitioning on the planted

Using Spectral Clustering for Finding Students’ Patterns of Behavior . . . 121

partition random graph model, by constructing a recursive algorithm. Spectral
clustering was used in [5] for extracting communities from the Enron graph.

3.1 Algorithm for Graph Partitioning Using Fiedler Vector

1. Find all connected components in graph.
2. Create Laplacian matrix of component L = D− P ′. P ′ = P − I, where P is

the adjacency matrix with weights, I is unity matrix and D is the diagonal
matrix with dii =

∑
j p′ij .

3. Find the eigenvector corresponding to second smallest eigenvalue of L.
4. Divide the component based on the sorted eigenvector.
5. Recurse on the obtained components (back to the step 2).

4 Social Network Analysis

Social network analysis concentrates on the importance of the relationships be-
tween the nodes. It maps and measures formal and informal relationships to
understand what facilitates or obstructs the knowledge flows that connect the
interacting objects, e.g., who knows whom, and who shares what information
and knowledge with whom and by which communication media.

The results of social network analysis might be used to:

– Identify the individuals or groups who play central roles.
– Distinguish bottlenecks (central nodes that provide the only connection be-

tween different parts of a network), as well as isolated individuals and groups.
– Strengthen the efficiency and effectiveness of existing, formal communication

channels.
– Improve innovation and learning.
– Refine strategies.

Centrality is an important concept in social network analysis. Borgatti and
Everett [2] developed a unified framework for the measurement of centrality. All
measures of centrality assess a node’s involvement in the walk structure of a
network. Measures vary along four key dimensions: type of nodal involvement
assessed, type of walk considered, property of walk assessed, and choice of sum-
mary measure.

Degree centrality can be used for identifying central roles of the object. Actors
who have more ties to other actors may be in advantageous positions. Degree
centrality is measured as the number of edges that involve a given node [15].
A node with high degree centrality maintains contacts with numerous other
network nodes. Such nodes can be seen as popular nodes with large numbers of
links to others. A central node occupies a structural position that may act as a
way for information exchange. In contrast, peripheral nodes maintain few or no
relations and thus are located at the margins of the network. Degree centrality
for a given node pi is calculated as:

122 G. Obadi, P. Dráždilová, J. Martinovič, K. Slaninová, V. Snášel

CD(pi) =
N∑

k=1

a(pi, pk) (1)

where N is the number of nodes in the network, a(pi, pk) = 1 if a edge exists
between pi and pk and i 6= k else a(pi, pk) = 0.

Katz [20] recognized that an individual’s centrality depends not only on how
many others it is connected to (it’s degree), but also on their centrality. He
measured centrality of a node by the total number of paths linking it to other
nodes in a network, exponentially weighted by the length of the path.

Closeness centrality measures the reciprocal of the mean geodesic distance
d(pi, pk), which is the shortest path between a node pi and all other reachable
nodes [15]. Closeness centrality can be regarded as a measure of how long it will
take information to spread from a given node to other nodes in the network [23].
Closeness centrality for a given node is calculated as:

CC(pi) =
N − 1

∑N
k=1 d(pi, pk)

(2)

where N is the number of nodes in the network and i 6= k.
In [24] authors combined existing methods on calculating exact values and

approximate values of closeness centrality and presented new algorithms to rank
the top-k vertices with the highest closeness centrality.

Betweenness centrality measures the extent to which a node lies on the paths
linking other nodes [15]. Betweenness centrality can be regarded as a measure
of the extent to which a node has control over information flowing between
others [23]. A node with a high betweenness centrality has a capacity to facilitate
interactions between the nodes that it links. It can be regarded as how well a
node can facilitate communication to other nodes in the network. Betweenness
centrality is calculated as:

CB(pi) =
N∑

j=1

j−1∑

k

gjk(pi)
gjk

(3)

where gjk is the total number of geodesic paths linking pj and pk, and gjk(pi) is
the number of those geodesic paths that include pi. Freeman’s centrality metrics
are based on analysis of a complete and bounded network which is sometimes
referred to as a sociocentric network. These metrics become difficult to evalu-
ate in networks with a large node population, because they require complete
knowledge of the network topology.

Using Spectral Clustering for Finding Students’ Patterns of Behavior . . . 123

5 Case Study: Finding Students’ Patterns of Behavior in
LMS Moodle

5.1 Data Set

A case study is conducted in order to find and visualize the patterns of behavior
in a large and sparse social network. The analyzed data collections are stored in
the Learning Management System (LMS) Moodle logs used to support eLearning
education at Silesian University, Czech Republic.

The logs consist of records of all events performed by Moodle’s users such
as communication in forums and chats, reading study materials or blogs, taking
tests or quizzes etc. The users of this system (students, tutors, and adminis-
trators) are members of a community which aims to provide the appropriate
services and guidance to its members, to make them achieve their objectives
successfully. The authors are interested in studying students’ activities in the
Moodle system and in discovering the latent social network created from groups
of students with similar patterns of behavior.

Data anonymisation was implemented during the data preprocessing phase,
and the study was only limited to investigating the events performed by students.
Let us define a set of students s ∈ S, set of courses c ∈ C and term Event as a
combination of Event prefix p ∈ P (e.g. course view, resource view, blog view,
quiz attempt) and a course c. An event then represents an action performed by
student s ∈ S in certain course c in LMS. On the basis of this definition, we
have obtained Set of Events ei ∈ E, which is represent by pairs ei = (pj , ck), j ∈
{1, . . . |P |}, k ∈ {1, . . . |C|} ordered by TimeStamp.

After that we obtain set of activities aj ∈ A. Activity is a sequence of events
aj = 〈 e1, e2, . . . , en 〉, performed by certain student s in a certain course c during
the optimal time period. In our previous experiments we found the 30 minutes
time period to be the most effective time interval. The findings showed that in
shorter time periods (5 minutes) students were performing only non-study activ-
ities, and in longer periods there was not a significant activity difference (that
means activities were very similar). For detailed information see our previous
work [13]. Similar conclusion was presented by Zorrilla et al. in [31].

Two matrices were obtained to represent the data: the Student matrix T
(|S|× |A|), where row (t1, t2, . . . , t|A|) represents a subset of activities performed
by the student in the Moodle system, and the Matrix of similarity P (|S| × |S|),
which is derived from matrix T , and defines students’ relationships using their
similar activities. The similarity between two students (vectors) was defined by
the Cosine measure [29].

pi,j =
∑n

k=1 tiktjk√∑n
k=1 t2ik

√∑n
k=1 t2jk

(4)

Matrices T and P are very large and sparse because of the large number of
activities performed by students. Therefore the visualization of the latent ties
between students with similar behavior was very hard and unfeasible. One of

124 G. Obadi, P. Dráždilová, J. Martinovič, K. Slaninová, V. Snášel

our goals was the reduction of that high number of activities using specification
of smaller groups with characteristic activities.

Spectral clustering was used to divide the collection of students into a number
of smaller groups. The spectral clustering method was then extended by further
analysis of the obtained clusters. For each cluster a level was set to obtain smaller
sets of objects in cluster. The most frequent activities in each cluster can describe
the cluster with more details. We are interested in typical activities for each
cluster. Activities, which are in all clusters, and activities which are less frequent
can be omitted. Merging the reduced activity sets in each cluster defines set of
typical activities for all objects in the selected group.

5.2 Experiment

The main objective of this experiment is to investigate the relationship between
the similarity in students’ behavior and their grades. For this purpose has been
developed specialized software, which allows the user (researcher or tutor) to
define the values of input data that meets his/her needs. Input data definition
is based on data collection filtering and setting of parameter time period. The
user can select groups of students by Course, Event Prefix (which represents a
set of Events e), Step (time period) and level of similarity. To test the behavior
of students accessing the resources which are assigned for the different courses, a
course called MicroEconomy with 307 students and a level of similarity = 0.5 was
analyzed. The following figures illustrate the results of the experiment. Figure
1 represents the graph before clustering, and Figure 2 illustrates the different
clusters obtained (colored nodes represent different grades; yellow is A, green
yellow is B, green is C, blue is D, red is E, black is F and gray is without the
grade).

Fig. 1. Graph of Students’ Activities when Accessing the Course Resources

Obviously, the graphs show that these clusters consist of students with dif-
ferent distribution of grades.

Using Spectral Clustering for Finding Students’ Patterns of Behavior . . . 125

Fig. 2. Graph of Student’s Clusters when Accessing the Course Resources

The same procedure was applied to the same course to explore students’
behavioral patterns in the forum and again a number of clusters were detected
with different grades in each one of them, see (Fig 3 and Fig 4).

Fig. 3. Graph of Students’ Activities in the Forum

126 G. Obadi, P. Dráždilová, J. Martinovič, K. Slaninová, V. Snášel

Fig. 4. Graph of Students’ Clusters in the Forum

The results of this experiment showed that the similarity in students behavior
does not have significant effect on their final grades. It is caused by several
limitations, more detailed description is presented in conclusion.

Another test was applied to study the correlation between students’ position
in the network (using different types of centrality) and their academic perfor-
mance. Findings from this experiment can be helpful for course tutors. The tutor
can recommend to students suitable study behavior, or contact to the student
with appropriate study behavior.

Fig. 5. Histogram of the Degree Centrality for One Course and Clustering Level 40

Using Spectral Clustering for Finding Students’ Patterns of Behavior . . . 127

The findings of the study showed that both students with high academic per-
formance and students with educational difficulties were isolated, while students
with average academic performance were highly connected, see (Fig 5). This
group of students participates actively in the course forum, but maybe they dis-
cuss the issues that are less important to their academic progress. This is one of
the limitations of the data extracted from Moodle log files. The log files record
only request transactions but they do not record the type of content on each
page (especially topics discussed in forum).

Fig. 6. Histogram of the Betweenness Centrality for One Course and Clustering Level
40

Fig. 7. Histogram of the Closeness Centrality for One Course and Clustering Level 40

6 Conclusion

In this study was presented an application of spectral clustering method to find
the patterns of behavior of groups of students enrolled in the elearning system.
For easier generation of the graphs described students’ behavioral patterns in

128 G. Obadi, P. Dráždilová, J. Martinovič, K. Slaninová, V. Snášel

elearning system, with requires setting of number of input variables for cluster-
ing method or setting of the dimensions (selection of the appropriate course or
students’ activities in the course provided in elearning system), was developed
specialized software. Moreover, authors attempted to find relations between the
behavioral study patterns and the students’ study performance in the selected
course. The findings of the experiment did not show any relation between the
similarity in students’ behavior and their grades as well as relation between stu-
dents’ positions in generated network and their academic performance. We found
significant clusters of similar behavior, but with different distribution of grades.
Students with average values of grades were at the center of the network. During
the implementation of this study we encountered a number of limitations. The
first limitation was the small size and homogeneity of the data set, the second
was that all events were given the same importance - the experiment showed
that clustering could be better if we assigned different weights to the events ac-
cording to their significance to the course. Nevertheless, developed software can
be successfully used as a supporting tool for tutors leading groups of students in
elearning systems, to discover significant behavioral patterns of their students.
These information can be useful especially in large groups of students were are
applied methods of collaborative learning. In our future work, we intend to apply
a thorough analysis on larger data collections to explore significant patterns of
behavior, and to find other factors that might affect students’ grades.

7 Acknowledgement

We acknowledge the support of project SP/2010196 Machine Intelligence.

References

1. D. Barbar, J. Couto, S. Jajodia, L. Popyack, and N. Wu. Adam: Detecting intru-
sions by data mining. In In Proceedings of the IEEE Workshop on Information
Assurance and Security, pages 11–16, 2001.

2. S. Borgatti and M. Everett. A graph-theoretic perspective on centrality. Social
Networks, 28(4):466–484, October 2006.

3. G. N. Burlak, J.-A. Hernandez, A. Ochoa, and J. Munoz. The use of data mining
to determine cheating in online student assessment. In CERMA ’06: Proceedings
of the Electronics, Robotics and Automotive Mechanics Conference, pages 161–166,
Washington, DC, USA, 2006. IEEE Computer Society.

4. J. M. Carbo, E. Mor, and J. Minguillon. User navigational behavior in e- learning
virtual environments. In WI ’05: Proceedings of the 2005 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence, pages 243–249, Washington, DC, USA,
2005. IEEE Computer Society.

5. A. Chapanond, M. S. Krishnamoorthy, and B. Yener. Graph theoretic and spectral
analysis of enron email data. Comput. Math. Organ. Theory, 11(3):265–281, 2005.

6. D. Cheng, R. Kannan, S. Vempala, and G. Wang. On a recursive spectral algorithm
for clustering from pairwise similarities. Technical report, 2003.

7. D. Cheng, R. Kannan, S. Vempala, and G. Wang. A divide-and-merge methodology
for clustering. ACM Trans. Database Syst., 31(4):1499–1525, December 2006.

Using Spectral Clustering for Finding Students’ Patterns of Behavior . . . 129

8. R. Dantu and P. Kolan. Detecting spam in voip networks. In SRUTI’05: Pro-
ceedings of the Steps to Reducing Unwanted Traffic on the Internet on Steps to
Reducing Unwanted Traffic on the Internet Workshop, pages 5–5, Berkeley, CA,
USA, 2005. USENIX Association.

9. A. Dasgupta, J. Hopcroft, R. Kannan, and P. Mitra. Spectral clustering by re-
cursive partitioning. In ESA’06: Proceedings of the 14th conference on Annual
European Symposium, pages 256–267. Springer-Verlag, 2006.

10. G. Dekker, M. Pechenizkiy, and J. Vleeshouwersu. Predicting students drop out:
A case study. In In Proceedings of Educational Data Mining 2009, pages 41–50,
2009.

11. C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm
for graph partitioning and data clustering. In ICDM ’01: Proceedings of the 2001
IEEE International Conference on Data Mining, pages 107–114, Washington, DC,
USA, 2001. IEEE Computer Society.

12. W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs.
IBM J. Res. Dev., 17(5):420–425, 1973.

13. P. Drázdilová, K. Slaninová, J. Martinovic, G. Obadi, and V. Snásel. Creation
of students’ activities from learning management system and their analysis. In
CASoN, pages 155–160, 2009.

14. M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23:298–305, 1973.

15. L. C. Freeman. Centrality in social networks: Conceptual clarification. Social
Networks, 1(3):215–239, 1979.

16. E. Gaudioso, M. Montero, L. Talavera, and F. H. del Olmo. Supporting teachers
in collaborative student modeling: A framework and an implementation. Expert
Systems with Applications, 36(2, Part 1):2260 – 2265, 2009.

17. D. J. Hand, P. Smyth, and H. Mannila. Principles of data mining. MIT Press,
Cambridge, MA, USA, 2001.

18. R. Iváncsy and I. Vajk. Frequent pattern mining in web log data. Acta Polytechnica
Hungarica, 3(1), 2006.

19. R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral. J.
ACM, 51(3):497–515, May 2004.

20. L. Katz. A new status index derived from sociometric analysis. Psychometrika,
18:39–43, 1953.

21. A. Laghos and P. Zaphiris. Sociology of student-centred e-learning communities:
A network analysis. In IADIS international conference, Dublin, Ireland, July 2006.
e-Society.

22. S. V. Nath. Crime pattern detection using data mining. In WI-IATW ’06: Proceed-
ings of the 2006 IEEE/WIC/ACM international conference on Web Intelligence
and Intelligent Agent Technology, pages 41–44, Washington, DC, USA, 2006. IEEE
Computer Society.

23. M. Newman. A measure of betweenness centrality based on random walks. Social
Networks, 27(1):39–54, January 2005.

24. K. Okamoto, W. Chen, and X.-Y. Li. Ranking of closeness centrality for large-
scale social networks. In FAW ’08: Proceedings of the 2nd annual international
workshop on Frontiers in Algorithmics, pages 186–195, Berlin, Heidelberg, 2008.
Springer-Verlag.

25. A. Ortiz-Pelaez, D. Pfeiffer, R. Soares-Magalhes, and F. Guitian. Use of social
network analysis to characterize the pattern of animal movements in the initial
phases of the 2001 foot and mouth disease (fmd) epidemic in the uk. Preventive
Veterinary Medicine, 76(1-2):40 – 55, 2006.

130 G. Obadi, P. Dráždilová, J. Martinovič, K. Slaninová, V. Snášel

26. D. Perera, J. Kay, I. Koprinska, K. Yacef, and O. R. Zäıane. Clustering and
sequential pattern mining of online collaborative learning data. IEEE Trans. on
Knowl. and Data Eng., 21(6):759–772, 2009.

27. S. Preidys and L. Sakalauskas. Analysis of students study activities in virtual
learning environments using data mining methods. Technological and economic
development of economy, 16(1):94–108, 2010.

28. C. Romero and S. Ventura. Educational data mining: A survey from 1995 to 2005.
Expert Systems with Applications, 33(1):135 – 146, 2007.

29. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

30. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22:888–905, 1997.

31. M. Zorrilla, E. Menasalvas, D. Marn, E. Mora, and J. Segovia. Computer Aided Sys-
tems Theory EUROCAST 2005, volume 3643/2005 of Lecture Notes in Computer
Science, chapter Web Usage Mining Project for Improving Web-Based Learning
Sites. Springer Berlin / Heidelberg, 2005.

Deferred node-copying scheme for XQuery
processors

Jan Kurš and Jan Vraný

Software Engineering Group, FIT ČVUT,
Kolejńı 550/2, 160 00, Prague, Czech Republic
kurs.jan@post.cz, jan.vrany@fit.cvut.cz

Deferred node-copying scheme for XQuery
processors

Jan Kurš and Jan Vraný

Software Engineering Group, FIT ČVUT,
Kolejn 550/2, 160 00, Prague, Czech Republic
kurs.jan@post.cz, jan.vrany@fit.cvut.cz

Abstract. XQuery is generic, widely adopted language for querying
and manipulating XML data. Many of currently available native XML
databases are using XQuery as its primary query language. The XQuery
specification requires each XML node to belong to exactly one XML tree.
In case of the XML subtree is appended into a new XML structure, the
whole subtree has to be copied. This may lead into excessive and un-
necessary data copying and duplication. In this paper, we present a new
XML node copying scheme that defers the node data copy operation un-
less necessary. We will show that this schemes significantly reduces the
XML node copy operations required during the query processing.

Keywords: XML, XQuery, XQuery Processor, Smalltalk

1 Introduction

XQuery is an XML query language designed by the World Wide Web Consor-
tium. Although widely adopted, fast and efficient implementation is still lacking.
Optimization techniques for XQuery are still a subject to an active research.
XQuery 1.0 and XPath 2.0 Data Model specification [1] forbids sharing of data
model among multiple XML node hierarchies. Section 2.1 says:

. . .
Every node belongs to exactly one tree, and every tree has exactly one
root node.
. . .

If a XML node is added into a new XML tree, the naive realization of this
requirement would create a new node (by copying the original one) and the copy
would be placed into the new XML tree. Consider the query at figure 1 is to be
evaluated and its output is to be serialized to an output file.

A whole XML subtree that matches fn:doc("doc.xml")//authors is never
used. This may lead into excessive node copying and higher memory consump-
tions depending on the subtree size.

In this paper we will describe an efficient node-copying scheme that avoids
unnecessary copying while preserving XQuery semantics. We will also discuss its
correctness and benchmark results.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 131–138, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

132 Jan Kurš, Jan Vraný

1 let $authors = element authors { fn:doc("doc.xml")//authors }
2 let $titles = element titles { fn:doc("doc.xml")//titles }
3 return element result { $titles }

Fig. 1. Simple document-creating query

The paper is organized as follows: section 2 give an overall description of the
node-copying scheme mentioned above. Section 3 discusses experimental results
based on running XMark benchmarks. Section 4 provides a brief overview of
related work. Section 5 concludes by summarizing presented work.

2 Deferred Node-copying

The basic idea is simple: share existing XML nodes between node hierarchies and
defer node-copy operation unless absolutely inevitable. In our implementation
the XML node can belong into multiple node hierarchies, although the XQuery
specification requirement mentioned in section 1 is preserved.

The deferred node copying scheme has been developed to meet two main
goals:

– separate query processing logic from underlying physical data model and
– reduce memory consumption by preventing unnecessary data copying

The first requirement has software engineering origin. XQuery processors
should be able to operate over various data models, not necessarily XML-based.
Moreover, good separation of query processor from physical data model provides
possibility to use one XQuery implementation in multiple environments – as a
standalone XQuery tools or within a database management machine.

The latter goal came from practical needs. In case of large documents and
complex queries, naive implementation of an XQuery may consume – in edge
cases – twice more memory than actually needed.

2.1 XDM Adaptor

XDM specification defines a sequence to be an instance of data model. Each
sequence consists of zero or more items. An item is either a node or atomic value.
The specification also defines a bunch of node properties such as dm:node-name
or dm:parent.

To meet our first goal we separates node from its physical data storage though
an XDM adaptor which operates on so called node ids. Node id is an unique
identifier of an XML node within particular physical storage. The structure of
the node id is not defined – in fact node id could be anything: reference to a
DOM node in memory, pointer to a database file or simple integer.

Usage of XDM adaptor give us easy and straightforward way how to access
different physical data models. XDM adaptor abstracts any kind of data source

Deferred node-copying scheme for XQuery processors 133

and may use any kind of optimization (such as extensive caching) to access data
effectively. However the physical data storage and access strategies are hidden
to the rest of the XQuery processor.

2.2 Node States

In order to defer copy operation, a new node property called node state is intro-
duced. Each node is in exactly one state from following three states:

Accessed State. Nodes that come from external data source are in accessed
state.

Constructed State. Nodes that are constructed during query processing are
in accessed state.

Hybrid State. Nodes which belongs to multiple node hierarchies are in a hybrid
state.

2.3 Actions

During the query processing, the state of the node may change. The state dia-
gram of the node is shown at figure 2. There are three kinds of actions:

Copy Action. The copy action is performed whenever the XML subtree is ap-
pended into a new XML hierarchy. The original subtree should be duplicated
in order to meet the requirement XML node to belong into just one node
hierarchy.

Change Action. The change action models any change in a data model such
as setting a new parent.

“Child Read” Action. The “child read” action represents the situation when
the XQuery processor accesses child nodes of given node.

Hybrid Accessed Constructederror

Copy

Copy

Change

Change/child read

Copy

Child read
Change/child read

Fig. 2. Node State Transitions

Consider a document doc.xml (it’s content is shown at figure 3) and query 1
(figure 4). During execution of the query, following actions are performed:

134 Jan Kurš, Jan Vraný

1 <?xml version="1.0"?>

2 <root>

3 <elem>elem1</elem>

4 <elem>elem2</elem>

5 </root>

Fig. 3. doc.xml contents

1 element myroot {
2 attribute attr { ’value’ },
3 fn:doc("doc.xml")/elem[0]

4 }

Fig. 4. Example Query 1

1. The myroot element is created in a constructed state. Then change actions
are issued on that node: setting the node name “myroot”, adding attribute
“attr” and appending a text node.

2. Afterwards, the doc.xml is read and two child read actions are performed in
order to evaluate XPath expression.

3. Finally, the first elem (accessed) node from doc.xml is to be added into the
myroot (constructed) node – the elem node and all its descendants should
be copied.

2.4 Transitions

Fig. 5. Two XML trees sharing one hybrid node

Accessed Node Transitions. When a copy action of accessed node is trig-
gered, the node state is changed from accessed to hybrid and no physical data
copy is made. Changes to accessed nodes are not permitted – any change will
immediately lead into an error.

Constructed Node Transitions. Copy operations on constructed nodes be-
haves exactly as on accessed nodes. Changes to constructed nodes are permitted.

Deferred node-copying scheme for XQuery processors 135

Hybrid Node Transitions. Transitions based on actions on hybrid nodes are
bit more interesting:

Copy Action. Copy action on hybrid nodes is a no-op. As a result, the same
node is returned with its state unchanged.

Change Action. Whenever any of node properties (dm:parent, dm:name etc.)
is to be changed the node state is changed to constructed and all node
properties are copied. See the query at figure 6. When processing expression
at line 5, two things happen (in that order):
1. The text node “elem1” (a result of $doc/elem[0]/text() expression)

is added to the myroot element. States of nodes after this addition are
depicted at left side of figure 7.

2. Afterwards, the text node value “elem1“ has to be changed to the “elem1
is the first” because of the specification requirements. Obviously, the
hybrid text node must be copied. The XML data accessible though $doc
must remain unchanged.

Child Read Action. While appending a XML tree into a new structure, the
state of a root node of the appended tree is changed to hybrid, the reference
from the new structure is added to the hybrid. The rest of the appended
tree (children of the root node) are unchanged – they don’t know, that their
parent has changed its state to hybrid. This cause serious problems while
executing XPath commands. To overcome this issue, we convert hybrid node
to a constructed one during child read action. Such a behavior is illustrated
at figure 8.

Data are physically copied only when hybrid node is either being changed or
its children are being read.

1 let $doc:= doc("doc.xml")

2 return

3 element myroot {
4 element myelem {
5 { $doc/elem[0]/text() } is the first }
6 }
7 }

Fig. 6. Example Query 2

Serialization of Result Set. Once the query is processed, serialization of result
set may not lead into XML node copying. Because query is already processed, no
node kind transitions must be performed during serialization and thus no node
copies must be created. Obviously, if the application wants work with the result
set as with nodes in memory and wants to perform some modification on it, the
result set must be copied.

136 Jan Kurš, Jan Vraný

Fig. 7. Change of hybrid node into the constructed node

Fig. 8. Change of hybrid node while exploring the children

3 Discussion

3.1 Specification Conformance

Although deferred node-copying scheme does not require the XML nodes to
belong to exactly one node hierarchy it preserves original XQuery semantics.
Our claim is based on the results from the XQuery Test Suite [3].

The axes tests and element constructors tests from Minimal Conformance -
Expressions section of XQTS Catalogue cover the node identity semantics and
were used to test the correctness of deferred node-copying scheme. Our proof-
of-concept implementation successfully passes all the mentioned test cases.

3.2 Benchmarks

Presented deferred node-copying scheme has been developed in order to increase
XQuery processor performance by reducing number of copy operations. A natural
question is whether this scheme has substantial effect in real-world applications.
The table 3 shows number of copy operations for selected XMark [2] queries1 on
a file created with the XMark data generator.

Number of saved copies is dependent on a query characteristics. There are
no new nodes created in a Q1 command and that is why there is no difference in
results. There are text nodes appended to elements in a Q2 command. The text
nodes does not need to be copied at all, only transformed to the hybrid state.

There is a subtree appended to each result item during the Q13 execution.
Without the optimization, each element of a tree has to be copied, but with the
optimization turned on, only a few of nodes are copied.
1 Plus one nonstandard query marked INC. Its code is element a

{doc("file:///auctions.xml") }. We include it as an illustration of extreme case.

Deferred node-copying scheme for XQuery processors 137

Q. # DNC IC Q. # DNC IC

Nh Nc Nh Nc Nh Nc Nh Nc

Q1 0 0 0 0 Q2 106 0 0 106

Q3 0 44 0 44 Q4 0 0 0 0

Q5 0 0 0 0 Q6 0 0 0 0

Q7 0 0 0 0 Q8 25 25 0 50

Q9 12 25 0 39 Q10 402 1 0 1244

Q11 12 25 0 39 Q12 3 3 0 6

Q13 22 22 0 560 Q14 0 0 0 0

Q15 7 0 0 7 Q16 0 6 0 6

Q17 0 138 0 138 Q18 0 0 0 0

Q19 217 217 0 434 Q20 8 0 0 12

INC 2074 114 0 5857

Legend:

Nh – number of hybrid nodes created
Nc – number of physically copied nodes
DNC – evaluated using deferred node-copying scheme
IC – evaluated using immediate copy as specified by the XQuery specification

Table 1. Benchmark results

4 Related Work

eXist XQuery Processor. eXist2 is an open-source XML-native database with
XQuery as its primary query language. As far as we know, eXist XQuery imple-
mentation unconditionally copies nodes whenever the node is to be added into
a different node hierarchy. Our approach is different since we avoid unnecessary
copy operations.

Saxon XQuery Processor. Saxon3 is well-known, widely adopted XML tool
set including XSLT 2.0, XPath 2.0 and XQuery 1.0 processor. Saxon’s XQuery
processor introduces concept of virtual nodes – a light-weigh node shallow copies
that shares as many properties as possible with their origin.

Similarly to our approach, for a given virtual node some of standard XDM
properties may be overridden – namely the parent property. When the Saxon

2 http://exist.sourceforge.net/
3 http://saxon.sourceforge.net/

138 Jan Kurš, Jan Vraný

XQuery processor iterates over virtual node’s children, those are converted to
virtual nodes.

However, presented deferred node copying scheme differs from virtual nodes
approach in several aspects:

1. Creating virtual copies requires a new object to be allocated in the memory.
Deferred node copying scheme shares the same object.

2. Creation of virtual copies is a part of XQuery processing logic and must
be explicitly expressed, whereas our approach separates copying logic of an
XDM model from the query evaluation logic.

5 Conclusion and Future Work

This paper presents a deferred XML node-copying scheme for XQuery processors
that significantly reduces number of source nodes copy operations required dur-
ing query processing. This scheme defers the copy operation unless absolutely
inevitable. Whether the node is actually copied depends on a node state, a new
property which is maintained for each node in addition to standard XDM prop-
erties. Correctness of this approach has been successfully tested by XQuery Test
Suite.

The main benefits of deferred node-copying scheme are: (i) efficiency, (ii) easy
to implement, (iii) independent on physical data model and (iv) independent on
XQuery processing logic.

As a future plan, we plan to extend this scheme for use with various XML
indexing approaches, Ctree [4] and [5] in particular.

References

1. M. N. Mary Fernández, Ashok Malhotra. Jonathan Marsh and N. Walsh.
XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C, 1st edition, 2006.
http://www.w3.org/TR/xpath-datamodel.

2. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. Xmark:
A benchmark for xml data management. In In VLDB, pages 974–985, 2002.

3. W3C XML Query Working Group. XML Query Test Suite. W3C, 1st edition, 2006.
http://www.w3.org/XML/Query/test-suite/.

4. Q. Zou, S. Liu, and W. W. Chu. Ctree: a compact tree for indexing xml data.
In WIDM ’04: Proceedings of the 6th annual ACM international workshop on Web
information and data management, pages 39–46, New York, NY, USA, 2004. ACM.

5. Q. Zou, S. Liu, and W. W. Chu. Using a compact tree to index and query xml
data. In CIKM ’04: Proceedings of the thirteenth ACM international conference
on Information and knowledge management, pages 234–235, New York, NY, USA,
2004. ACM.

Denotational Semantics of the XML-λ Query
Language?

Pavel Loupal1 and Karel Richta2

1 Department of Computer Science and Engineering, FEL ČVUT
Karlovo nám. 13, 121 35 Praha 2

loupalp@fel.cvut.cz

2 Department of Software Engineering MFF UK,
Malostranske nam. 25, 118 00 Praha 1

richta@ksi.mff.cuni.cz

Denotational Semantics of the XML-λ Query

Language?

Pavel Loupal1 and Karel Richta2

1 Department of Computer Science and Engineering, FEL ČVUT
Karlovo nám. 13, 121 35 Praha 2

loupalp@fel.cvut.cz

2 Department of Software Engineering MFF UK,
Malostranske nam. 25, 118 00 Praha 1

richta@ksi.mff.cuni.cz

Abstract. In this paper, we define formally the XML-λ Query Lan-
guage, a query language for XML, that employs the functional data
model. We describe its fundamental principles including the abstract
syntax and denotational semantics. The paper basically aims for outlin-
ing of the language scope and capabilities.

1 Introduction

In this paper, we define formally the XML-λ Query Language, a query language
for XML, that employs the functional data model. The first idea for such an
attitude was published in [4]. This research brought in the key idea of a func-
tional query processing with a wide potential that was later proven by a simple
prototype implementation [6].

We can imagine two scenarios for this language; firstly, the language plays
a role of a full-featured query language for XML (it has both formal syntax
and semantics and there is also an existing prototype that acts as a proof-of-
the-concept application). In the second scenario, the language is utilized as an
intermediate language for the description of XQuery semantics. In [3] we propose
a novel method for XQuery evaluation based on the transformation of XQuery
queries into their XML-λ equivalents and their subsequent evaluation. As an
integral part of the work, we have designed and developed a prototype of an
XML-λ query processor for validating the functional approach and experiment-
ing with it.

2 XML-λ Query Language

In this section, we describe the query language XML-λ, that is based on the sim-
ply typed lambda calculus. As a formal tool we use the approach published in
? This work has been supported by the Ministry of Education, Youth and Sports under

Research Program No. MSM 6840770014 and also by the grant project of the Czech
Grant Agency (GAČR) No. GA201/09/0990.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 139–146, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

140 Pavel Loupal, Karel Richta2 Loupal P., Richta K.

Richta’s overview of semantics [5]. For listing of language syntax, we use the Ex-
tended Backus-Naur Form (EBNF) and for meaning of queries the denotational
semantics [5].

2.1 Language of Terms

Typical query expression has a query part — an expression to be evaluated over
data — and a constructor part that wraps a query result and forms the output.
The XML-λ Query Language is based on λ-terms defined over the type system
TE as shown later. Lambda calculus, written also as λ-calculus, is a formal
mathematical system for investigation of function definition and application. It
was introduced by Alonzo Church and has been utilized in many ways. In this
work, we use a variant of this formalism, the simply-typed λ-calculus, as a core
for the XML-λ Query Language. We have gathered the knowledge from [7] and
[1]. Our realization is enriched by usage of tuples.

The main constructs of the language are variables, constants, tuples, projec-
tions, and λ-calculus operations — applications and abstractions. The syntax is
similar to λ-calculus expressions, thus the queries are structured as nested λ-
expressions, i.e., λ . . . (λ . . . (expression) . . .). In addition, there are also typical
constructs such as logical connectives, constants, comparison predicates, and a
set of built-in functions.

Language of terms is defined inductively as the least set containing all terms
created by the application of the following rules. Let T, T1, . . . , Tn, n ≥ 1 be
members of TE . Let F be a set of typed constants. Then:

1. variable: each variable of type T is a term of type T
2. constant: each constant (member of F) of type T is a term of type T
3. application: if M is a term of type ((T1, . . . , Tn) → T) and N1, . . . , Nn are

terms of the types T1, . . . , Tn,then M(N1, . . . , Nn) is a term of the type T
4. λ-abstraction: if x1, . . . , xn are distinct variables of types T1, . . . , Tn and

M is a term of type T , then λx1 : T1, . . . , xn : T1.(M) is a term of type
((T1, . . . , Tn)→ T)

5. n-tuple: if N1, . . . , Nn are terms of types T1, . . . , Tn, then (N1, . . . , Nn) is a
term of type (T1, . . . , Tn)

6. projection: if (N1, . . . , Nn) is a term of type (T1, . . . , Tn), then N1, . . . , Nn

are terms of types T1, . . . , Tn

7. tagged term: if N is a term of type NAME and M is a term of type T then
N : M is a term of type (E → T).

Terms can be interpreted in a standard way by means of an interpretation as-
signing to each constant from F an object of the same type, and by a semantic
mapping from the language of terms to all functions and Cartesian products
given by the type system TE . Speaking briefly, an application is evaluated as
an application of of the associated function to given arguments, an abstraction
’constructs’ a new function of the respective type. The tuple is a member of
Cartesian product of sets of typed objects. A tagged term is interpreted as a
function defined only for one e ∈ E. It returns again a function.

Denotational Semantics of the XML-λ Query Language 141Denotational Semantics of the XML-λ Query Language 3

3 Abstract Syntax

As for evaluation of a query, we do not need its complete derivation tree; such
information is too complex and superfluous. Therefore, in order to diminish the
domain that needs to be described without any loss of precision, we employ
the abstract syntax. With the abstract syntax, we break up the query into logi-
cal pieces that forming an abstract syntax tree carrying all original information
constitute an internal representation suitable for query evaluation. We introduce
syntactic domains for the language, i.e., logical blocks a query may consist of.
Subsequently, we list all production rules. These definitions are later utilized in
Section 4 within the denotational semantics.

3.1 Syntactic Domains

By the term syntactic domain, we understand a logical part of a language. In
Table 1, we list all syntactic domains of the XML-λ Query Language with their
informal meaning. Notation Q : Query stands for the symbol Q representing a
member of the Query domain.

Q : Query XML-λ queries,
O : Option XML-λ options – XML input attachements,
C : Constructor XML-λ constructors of output results,
E : Expression general expressions, yield a BaseType value,
T : Term sort of expression, yield a BaseType value,
F : Fragment sub-parts of a Term,
BinOp : BinOperator binary logical operators,
RelOp : RelOperator binary relational operators,
N : Numeral numbers,
S : String character strings,
Id : Identifier strings conforming to the Name syntactic rule in [2],
NF : Nullary identifiers of nullary functions (subset of Identifier),
Proj : Projection identifiers for projections (subset of Identifier).

Table 1. Syntactic domains of the XML-λ Query Language

3.2 Abstract Production Rules

The abstract production rules listed in Table 2 (written using EBNF) connect
the terms of syntactic domains from the previous section into logical parts with
suitable level of details for further processing. On the basis of these rules, we
will construct the denotational semantics of the language.

4 Denotational Semantics

For description the meaning of each XML-λ query, we use denotational seman-
tics. The approach is based on the idea that for each correct syntactic construct
of the language we can define a respective meaning of it as a formal expression in

142 Pavel Loupal, Karel Richta4 Loupal P., Richta K.

Query ::= Options Constructor Expression
Constructor ::= ElemConstr + | Identifier+
ElemConstr ::= Name AttrConstr ∗ (Identifier | ElemConstr)
AttrConstr ::= Name Identifier
Expression ::= Fragment
Fragment ::= Nullary | Identifier | Fragment Projection

| SubQuery | FunctionCall | Numeral | String | Boolean
Term ::= Boolean | Filter | ’not’ Term | Term BinOper Term
Filter ::= Fragment RelOper Fragment
SubQuery ::= Identifier + Expression
BinOper ::= ’or’ | ’and’
RelOper ::= ’<=’ | ’<’ | ’=’ | ’!=’ | ’>’ | ’>=’
Numeral ::= Digit+ | Numeral ′.′ Digit+
Digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’
Identifier ::= Name
Projection ::= Identifier
Nullary ::= Identifier

Table 2. Abstract production rules for the XML-λ Query Language

another, well-known, notation. We can say that the program is the denotation of
its meaning. The validity of the whole approach is based on structural induction;
i.e, that the meaning of more complex expressions is defined on the basis of their
simpler parts. As the notation we employ the simply typed lambda calculus. It is
a well-known and formally verified tool for such a purpose.

4.1 Prerequisites

The denotational semantics utilizes a set of functions for the definition of the
language meaning. For this purpose, we formulate all necessary mathematical
definitions. We start with the data types and specification of the evaluation
context followed by the outline of bindings to the TE type system. Then, all
auxiliary and denotation functions are introduced.

Data Types. Each value computed during the process of the query evaluation is
of a type from Type. Let E be a type from the type system TE , we define Type as:

Type ::= BaseType | SeqType
SeqType ::= ⊥ | BaseType× SeqType
BaseType ::= E | PrimitiveType
PrimitiveType ::= Boolean | String | Number

Primitive types, Boolean, String, and Number, are defined with their set of
allowed values as usual. The type SeqType is the type of all ordered sequences
of elements of base types3. We do not permit sequences of sequences. The symbol
⊥ stands for the empty sequence of types – represents an unknown type. More

3 We suppose usual functions cons, append, null, head, and tail for sequences.

Denotational Semantics of the XML-λ Query Language 143Denotational Semantics of the XML-λ Query Language 5

precisely, we interpret types as algebraic structures, where for each type τ ∈ Type
there is exactly one carrier Vτ , whose elements are the values of the respective
type τ .

Variables. An XML-λ query can use an arbitrary (countable) number of vari-
ables. We model variables as pairs name : τ , where name refers to a variable
name and τ is the data type of the variable – any member of Type. Syntactically,
variable name is always prepended by the dollar sign. Each expression in XML-λ
has a recognizable type, otherwise both the type and the value are undefined.

Query Evaluation Context. During the process of query evaluation we need to
store variables inside a working space known as a context. Formally, we denote
this context as the State. We usually understand a state as the set of all active
objects and their values at a given instance. We denote the semantic domain
State of all states as a set of all functions from the set of identifiers Identifier
into their values of the type τ ∈ Type. Obviously, one particular state σ : State
represents an immediate snapshot of the evaluation process; i.e., values of all
variables at a given time. We denote this particular value for the variable x as
σ[[x]]. Simply speaking, the state is the particular valuation of variables. We use
the functor f [x ← v] for the definition of a function change in one point x to
the value v.

4.2 Auxiliary Functions

For the sake of readability improvement, we propose few semantic functions, de-
noted as auxiliary, that should make the denotations more legible. We introduce
functions: isIdent — returns true iff its argument denotes an variable identifier
in a given State, typeOf — returns a type of given argument (one type from the
Type set), valueOf — returns a typed value of an expression, bool — evaluates
its argument as a Boolean value, num — converts its argument into a numeric
value, and str — converts its argument into a string value.

Each expression e has a distinguished type in a state σ. The type can depend
on the state because an expression can contain variables. This type is available
by calling the typeOf semantic function defined in Table 3.

typeOf : Expression × State → Type

4.3 XML Schema-Specific Functions

For utilization of the features offered by the XML-λ Framework we propose
a number of functions working with information available in the type system.
These functions help us to access an arbitrary data model instance. An applica-
tion is informally used for accessing child elements of a given one. More formally,
it is an evaluation of a T -object specified by its name. A projection is generally
used for selecting certain items from a sequence. A nullary function. A T -nullary
function returns all abstract elements from ET . Root Element Access is a short-
cut for a common activity in the XML world — accessing the root element of
an XML document. We type it as a constant of a given type from TE .

144 Pavel Loupal, Karel Richta6 Loupal P., Richta K.

typeOf [[e]](σ) =

⊥ if e is a nullary fragment
Boolean if e ∈ νBoolean

(e is a constant of the type Boolean)
Numeral if e ∈ νNumeral

(e is a constant of the type Numeral)
String if e ∈ νString

(e is a constant of the type String)
τ if isIdent[[e]](σ) and σ[[e]] : τ

(e is a variable of the type τ)
Boolean if e is a relational fragment (filter)

e1 RelOper e2

Boolean if e is a logical expression
e1 BinOper e2, or not e1

Table 3. Types of general expressions

appXMLDoc : E → SeqType
projXMLDoc : SeqType × τ → SeqType
nullXMLDoc : E × T → SeqType
rootXMLDoc : E

4.4 Signatures of Semantic Functions

Having defined all necessary prerequisites and auxiliary functions (recalling that
the SeqType represents any permitted type of value), we formalize semantic
functions over semantic domains as

SemQuery : Query → (XMLDoc → SeqType)
SemOptions : Options→ (State → State)
SemExpr : Expression→ (State → SeqType)
SemTerm : Term → (State → Boolean)
SemFrag : Fragment → (State → SeqType)
SemRelOper : Fragment×RelOper × Fragment→ (State → Boolean)
SemBinOper : Term×BinOper × Term→ (State → Boolean)

4.5 Semantic Equations

We start with the semantic equations for the expressions. Each expression e has
a value SemExpr[[e]](σ) in a state σ. The state represents values of variables. The
result is a state, where all interesting values are bound into local variables.
Resulting values are created by constructors. A constructor is a list of items
which can be variable identifier or constructing expression. Resulting values can
be created by element constructors. Elements can have attributes assigned by
attribute constructors.
Options and Queries. The only allowed option in the language is now the speci-
fication of input XML documents. We explore a function Dom(X) that converts
input XML document X into its internal representation accessible under iden-
tification X#. A query consists of query options, where input XML documents

Denotational Semantics of the XML-λ Query Language 145Denotational Semantics of the XML-λ Query Language 7

SemTerm[[B]] = λσ : State.bool[[B]] if B is a constant of the type Boolean

SemTerm[[F1 RelOp F2]] = λσ : State.SemRelOper[[F1 RelOp F2]]σ

SemTerm[[′not′ T]] = λσ : State.not(SemTerm[[T]]σ)

SemBinOper[[T1 ’or’ T2]] = λσ : State.(SemTerm[[T1]]σ or SemTerm[[T2]]σ)

SemBinOper[[T1 ’and’ T2]] = λσ : State.(SemTerm[[T1]]σ and SemTerm[[T2]]σ)

SemTerm[[T1 BinOper T2]] = λσ : State.SemBinOper[[T1 BinOper T2]]σ

Table 4. Semantic equations for terms, relational and binary operators

SemAttrConstr[[N I]]σ = attribute(N,SemExpr[[I]]σ)

SemElemConstr[[NA1...AnI]]σ =

= element(N,σ[[I]], SemAttrCons[[A1]]σ, ..., SemAttrCons[[An]]σ)

SemElemConstr[[NA1...AnE]]σ =

= element(N,SemExpr[[E]]σ, SemAttrCons[[A1]]σ, ..., SemAttrCons[[An]]σ)

SemElemConstr[[N I]]σ = element(N, σ[[I]], nil)

SemElemConstr[[N E]]σ = element(N,SemExpr[[E]]σ, nil)

SemCons[[E1E]]σ = append(SemElemCons[[E1]]σ, SemCons[[E]]σ)

SemCons[[I1E]]σ = cons(σ[[I1]], SemCons[[E]]σ)

SemCons[[]]σ = nil

Table 5. The semantic equation for constructors

SemF rag[[Null]] = λσ : State.nullXMLDoc[[Null]]

SemF rag[[Id]] = λσ : State.σ[[Id]]

SemF rag[[f(E1, ..., En)]] = λσ : State.f(SemExpr[[E1]]σ, ..., SemExpr[[En]]σ)

SemF rag[[F P]] = λσ : State.(SemF rag[[F]] ◦ SemF rag[[P]])σ

SemF rag[[(subquery)(arg)]] = λσ : State.(SemExpr[[subquery]](σ)(SemExpr[[arg]](σ)))

SemF rag[[I1I2...InE]] = SemExpr[[I2...InE]](σ[SemExpr[[E]]σ ← I1])

SemF rag[[N]] = λσ : State.num[[N]] if N is a constant of the type Numeral

SemF rag[[S]] = λσ : State.str[[S]] if S is a constant of the type String

SemF rag[[B]] = λσ : State.bool[[B]] if B is a constant of the type Boolean

SemExpr[[F]]σ = SemF rag[[F]]σ

Table 6. Semantic equations for fragments and expressions

146 Pavel Loupal, Karel Richta8 Loupal P., Richta K.

SemQuery[[O C E]] =

= λδ : XMLDoc.(SemCons[[C]](SemExpr[[E]](SemOptions[[O]](λσ.⊥)(δ)))

SemQuery[[Q]](nil) = nil

SemQuery[[Q]](cons(H, T)) = append(SemQuery[[Q]](H), SemQuery[[Q]](T))

SemOptions[[]] = λσ : State.⊥
SemOptions[[xmldata(X) Y]] = λσ : State.SemOptions[[Y]](σ[Dom(X)← X#])

Table 7. Semantic equations for options and queries

are bound to its formal names, the query expression to be evaluated, and the
output construction commands. First, input files are elaborated, than an initial
variable assignment takes place, followed by evaluation of expression. Finally,
the output is constructed. The whole meaning of a query can be modeled as a
mapping from the sequence of input XML documents into a sequence of output
values of the type of Type.

5 Conclusions

In this paper, we have presented syntax and denotational semantics of the
XML-λ Query Language, a query language for XML based on simply typed
lambda calculus. We use this language within the XML-λ Framework as an
intermediate form of XQuery expressions for description of its semantics. Nev-
ertheless the language in its current version does not support all XML features,
e.g. comments, processing instructions, or deals only with type information avail-
able in DTD, it can be successfully utilized for fundamental scenarios both for
standalone query evaluation or as a tool for XQuery semantics description.

References

1. H. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, Volumes 1 (Background: Mathematical Structures) and 2 (Background:
Computational Structures), Abramsky & Gabbay & Maibaum (Eds.), Clarendon,
volume 2. Oxford University Press, 1992.

2. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
markup language (XML) 1.0 (fourth edition), August 2006. http://www.w3.org/

TR/2006/REC-xml-20060816.
3. P. Loupal. XML-λ : A Functional Framework for XML. Ph.D. Thesis, Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, February 2010. Submitted.

4. J. Pokorný. XML functionally. In B. C. Desai, Y. Kioki, and M. Toyama, editors,
Proceedings of IDEAS2000, pages 266–274. IEEE Computer Society, 2000.

5. K. Richta and J. Velebil. Sémantika programovaćıch jazyku. Univerzita Karlova,
1997.

6. P. Šárek. Implementation of the XML lambda language. Master’s thesis, Dept. of
Software Engineering, Charles University, Prague, 2002.

7. J. Zlatuška. Lambda-kalkul. Masarykova univerzita, Brno, Česká republika, 1993.

Modeling and Verification of Priority
Assignment in Real-Time Databases Using

Uppaal?

Martin Kot

Center for Applied Cybernetics, Department of Computer Science, FEI,
VSB - Technical University of Ostrava,

17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
martin.kot@vsb.cz

Modeling and Verification of Priority
Assignment in Real-Time Databases Using

Uppaal⋆

Martin Kot

Center for Applied Cybernetics, Department of Computer Science, FEI,
VSB - Technical University of Ostrava,

17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
martin.kot@vsb.cz

Abstract. Real-time database management systems (RTDBMS) are re-
cently subject of an intensive research. Model checking algorithms and
verification tools are of great concern as well. In this paper we show some
possibilities of using a verification tool Uppaal on some variants of pri-
ority assignment algorithms. We present some possible models of such
algorithms expressed as nets of timed automata, which are a modeling
language of Uppaal.

Keywords: real-time database systems, priority assignment, timed automata, model

checking, verification, verification tool, Uppaal

1 Introduction

Many real-time applications need to store some data in a database. It is possible
to use traditional database management systems (DBMS). But they are not able
to guarantee any bounds on a response time. This is the reason why so-called
real-time database management systems (RTDBMS) emerged (e.g. [1, 6]).

Formal verification is of great interest recently and finds its way quickly from
theoretical papers into a real live. It can prove that a system (or more exactly
a model of a system) has a desired behavior. The difference between testing
and formal verification is that during testing only some possible computations
are chosen. Formal verification can prove correctness of all possible computa-
tions. A drawback of formal verification is that for models with high descriptive
power are almost all problems undecidable. It is important to find a model with
an appropriate descriptive power to capture a behavior of a system, yet with
algorithmically decidable verification problems.

There are two main approaches to fully automated verification – equivalence
checking and model checking. Using equivalence checking, two models of systems
(usually model of specification and model of implementation) are compared using
⋆ Author acknowledges the support by the Czech Ministry of Education, Grant No.

1M0567.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 147–154, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

148 Martin Kot

some behavioral equivalence. In this paper we consider the other approach – so
called model checking (see e.g. [4, 9]). This form of verification uses a model of a
system in some formalism and a property expressed usually in the form of formula
in some temporal logic. Model checking algorithm checks whether the property
holds for the model of a system. There are quite many automated verification
tools which implement model checking algorithms (see e.g. [11] for overview).
Those tools use different modeling languages or formalisms and different logics.

The idea of our research is to explore possibilities of using existing verification
tools on RTDBMS. To our best knowledge, there are only rare attempts of
automated formal verification of real-time database system. In fact we know
about one paper ([10]) only where authors suggested a new pessimistic protocol
and verified it using Uppaal. They presented two small models covering only
their protocol.

There is not any verification tool intended directly for real-time database
systems. We have chosen the tool Uppaal because it is designed for real-time
systems. But, it is supposed to be used on so-called reactive systems, which are
quite different from database systems. So we need to find some possibilities how
to deal with it. Big problem of verification tools is so called state space explosion.
Uppaal is not able to manage too detailed models. On the other hand, too simple
models can not catch important properties of a real system. So we need to find
a suitable level of abstraction.

One of the most important and crucial parts of all database management
systems allowing concurrent access to data records is concurrency control. Some
of protocols used for concurrency control were modeled and verified using Uppaal
in [7, 8].

In this paper, we will concentrate on other important part of real-time
database systems – priority assignment. There are many parameters that can
be used for determination of priority of database transaction. Some of them are
criticality, deadline, amount of resources already used by transaction etc. There
were several algorithms presented for this task. In this paper we will consider
two of them presented in [1] – First Come First Serve (Section 4) and Earliest
Deadline (Section 5). The nature of this paper should be mainly proof of concept.
There are not any new informations found about described algorithms or any
errors in them discovered. But some general possibilities of modeling using nets
of timed automata are shown which can be used for verification and comparison
of, e.g., newly designed algorithms in the future.

Before we will discuss concrete models of algorithms, we will shortly describe
the tool Uppaal in the Section 2 and talk some general possibilities and assump-
tions over in Section 3.

2 Verification tool Uppaal

Uppaal ([3]) is a verification tool for real-time systems. It is jointly developed
by Uppsala University and Aalborg University. It is designed to verify systems
that can be modeled as networks of timed automata extended with some further

Modeling and Verification of Priority Assignment . . . 149

features such as integer variables, structured data types, user defined functions,
channel synchronization and so on.

A timed automaton is a finite-state automaton extended with clock variables.
A dense-time model, where clock variables have real number values and all clocks
progress synchronously, is used. In Uppaal, several such automata working in
parallel form a network of timed automata. An automaton has locations and
edges. Each location has an optional name and invariant. An invariant is a
conjunction of side-effect free expressions of the form x < e or x ≤ e where x is
a clock variable and e evaluates to an integer. Each automaton has exactly one
initial location.

Particular automata in the network synchronize using channels and values
can be passed between them using shared (global) variables. A state of the system
is defined by the locations of all automata and the values of clocks and discrete
variables. The state can be changed in two ways - passing of time (increasing
values of all clocks by the same amount) and firing an edge of some automaton
(possibly synchronizing with another automaton or other automata). Some loca-
tions may be marked as committed. If at least one automaton is in a committed
location, time passing is not possible, and the next change of the state must
involve an outgoing edge of at least one of the committed locations.

Each edge may have a guard, a synchronization and an assignment. Guard
is a side-effect free expression that evaluates to a boolean. The guard must
be satisfied when the edge is fired. It can contain not only clocks, constants
and logical and comparison operators but also integer and boolean variables
and (side-effect free) calls of user defined functions. Synchronization label is of
the form Expr! or Expr? where Expr evaluates to a channel. An edge with
c! synchronizes with another edge (of another automaton in the network) with
label c?. Both edges have to satisfy all firing conditions before synchronization.
Sometimes we say that automaton firing an edge labeled by c! sends a message
c to the automaton firing an edge labeled by c?. There are urgent channels as
well (synchronization through such a channel have to be done in the same time
instant when it is enabled) and broadcast channels (any number of c? labeled
edges are synchronized with one c! labeled edge). An assignment is a comma
separated list of expressions with a side-effect. It is used to reset clocks and set
values of variables.

Uppaal has some other useful features. Templates are automata with param-
eters. These parameters are substituted with given arguments in the process dec-
laration. This enables easy construction of several alike automata. Moreover, we
can use bounded integer variables (with defined minimal and maximal value), ar-
rays and user defined functions. These are defined in declaration sections. There
is one global declaration section where channels, constants, user data types etc.
are specified. Each automaton template has own declaration section, where local
clocks, variables and functions are specified. And finally, there is a system dec-
laration section, where global variables are declared and automata are created
using templates.

150 Martin Kot

Uppaal’s query language for requirement specification is based on CTL (Com-
putational Tree Logic, [5]). We do not present any formulas in this paper hence
details about query laguage are omitted due to space restrictions.

The simulation and formal verification are possible in Uppaal. The simulation
can be random or user assisted. It is more suitable for the user of the tool
to see if a model is behaving like he want and like it corresponds to the real
system. Formal verification should confirm that the system has desired properties
expressed using the query language. There are many options and settings for
verification algorithm in Uppaal. For example we can change representation of
reachable states in memory or the order of search in the state space (breadth
first, depth first, random depth first search). Some of the options lead to less
memory consumption, some of them speed up the verification. But improvement
in one of these two characteristic leads to a degradation of the other usually.
For more exact definitions of modeling and query languages and verification
possibilities of Uppaal see [3].

3 General comments and assumptions

In real-time database systems we consider usually transaction processing. Each
transaction incoming to a system is assigned a priority. Resources are than ap-
portioned according to priorities to transactions that are processed concurrently.
The number of concurrently processed transactions in system is usually bounded
– it is controlled by overload management policy. Incoming transactions have
usually a deadline. This can be hard (transaction exceeding deadline becomes
nearly useless and can be aborted for the sake of other transactions meeting
their deadlines) or soft (the value of transaction exceeding deadline decreases,
the priority can be lowered and transaction is processed in the time when there
are not any transaction possibly meeting deadlines). In this paper we consider
hard deadlines.

Scheduling and computation time assignment is strongly connected with pri-
orities. Hence we will discuss this also in the following sections. Other aspects
as, e.g., concurrency control will be omitted in order that the suggested models
are still manageable by Uppaal.

There are many possibilities how to model transaction arrival. For example,
there can be special automaton serving as generator of transactions. The models
described in this paper are designed for comparison of two different algorithms.
Hence we have decided to define incoming transactions statically as an array
inc_trans which elements are structures of release_time (representing incom-
ing time of transaction since beginning), deadline_time(deadline since begin-
ning), operations (number of database operations), received_time (initially
equals zero, it represents computation time already used by this transaction).
For simplicity we do not consider exact database records and we even consider
that all database operations need the same computational time given by constant
OP_TIME. Both model can be simulated over this array to compare them (number
of aborted transactions etc.) We can also automatically check queries expressed

Modeling and Verification of Priority Assignment . . . 151

as formulae of temporal logic and become some other useful informations about
modeled algorithms.

4 First Come First Serve

This policy assigns the highest priority to the transaction with the earliest re-
lease time. Often, release time equals arrival time. This algorithm is not very
suitable for real-time database systems because it does not make use of deadline
information. It can give more computation time to older transaction instead a
newer transaction with more urgent deadline.

We consider that all computation time is assigned to the oldest transaction in
a system until it finishes or reaches its deadline. Hence we will need just one copy
of automaton depicted on Figure 1 atop. This automaton represents successively
all transaction processed by a modeled system.

The state Inactive represents situation when there is not any processed
transaction. Constant TRANSACTIONS contains the overall number of transactions
defined in the input array, variable act_trans counts processed transactions.
Clock variable time represents time from the beginning while clock variable
op_time measures the time of performance of one database operation. If actual
transaction ends successfully (number of performed operations op_done reaches
the number of operations specified for this transaction), the automaton gets
through the state Done to Inactive and it is prepared for representation of next
transaction. If the transaction reaches its deadline before successful finish, the
abort is modeled by the state Abort, it is counted and the automaton goes to
the state Inactive once again.

The state Waiting is intended for the situation when there are more trans-
actions in the input sequence but release time (representing time of arrival in
the real system) is not passed yet. If all transactions from the input sequence
are processed, automaton goes to the state End and a run is deadlocked. It is
the only possible deadlock situation of this model (this has been checked using
verification possibility of Uppaal).

5 Earliest Deadline

Earliest Deadline is algorithm which gives the highest priority to transaction
with the earliest deadline. A disadvantage of this policy is that it can give high
priority and hence a big amount of resources to a transaction which is about to
miss its deadline anyway.

Assigned priorities can be used in several different ways for distribution of re-
sources. One way is that a transaction with the highest priority gets all resources
until it finishes or exceeds its deadline and it is aborted. To show some other
general modeling possibilities, we have chosen some other way. We consider sev-
eral concurrently processed transactions and scheduler distributes computation
time between all of them. Transactions with higher priority get more time but
no transaction is skipped. All automata representing concurrent transactions are

152 Martin Kot

instances of the same template depicted on Figure 1 down. The number of those
instances can be set by a constant PAR_TRANS.

Waiting
inc_trans[act_trans].release_time>=time

End

Abort

Done

Operation
op_time<=OP_TIME

Active

Inactive

act_trans<TRANSACTIONS &&
inc_trans[act_trans].deadline_time<=time

act_trans<TRANSACTIONS && inc_trans[act_trans].release_time<=time
deadline=inc_trans[act_trans].deadline_time,
op_done=0, op_plan=inc_trans[act_trans].operations

act_trans>=
TRANSACTIONS

inc_trans[act_trans].release_time<=time
deadline=inc_trans[act_trans].deadline_time,
op_done=0, op_plan=inc_trans[act_trans].operations

act_trans<
TRANSACTIONS &&
inc_trans[act_trans].release_time>time

op_time==OP_TIME
op_done++

op_done<op_plan &&
time<=deadline

op_time=0

op_done == op_plan

act_trans++, aborted_trans++

time>deadline

act_trans++

Waiting
inc_trans[cor_trans[trans_id]].release_time>=time

End

Abort

Done Operation

op_time<=OP_TIME

Sleep
time<=deadline

Inactive

start_notif!
cor_trans[trans_id]=act_trans++

act_trans<TRANSACTIONS && inc_trans[act_trans].release_time<=time &&
inc_trans[act_trans].deadline_time>=time
deadline=inc_trans[act_trans].deadline_time, calc_trans=act_trans,
op_done=0, active_trans[trans_id]=true, op_plan=inc_trans[act_trans].operations

time<=deadlinetime>=deadline

preempt?
inc_trans[cor_trans[trans_id]].received_time=op_done

act_trans<TRANSACTIONS &&
inc_trans[act_trans].deadline_time<=time

act_trans++

op_done == op_plan
abort_notif!
active_trans[trans_id]=false

time>=deadline
abort_notif!
active_trans[trans_id]=false

time<=deadline
activate[trans_id]?

op_time=0

op_time>=OP_TIME && time<=deadline
op_done++

op_done<op_plan && time<=deadline
op_time=0

act_trans>=TRANSACTIONS

inc_trans[cor_trans[trans_id]].release_time<=time
start_notif!
deadline=inc_trans[cor_trans[trans_id]].deadline_time, op_done=0, active_trans[trans_id]=true,
calc_trans=cor_trans[trans_id], op_plan=inc_trans[cor_trans[trans_id]].operations

act_trans<TRANSACTIONS &&
inc_trans[act_trans].release_time>time

cor_trans[trans_id]=act_trans++

aborted_trans++,
cor_trans[trans_id]=-1

time>=deadline
active_trans[trans_id]=false

cor_trans[trans_id]=-1

Fig. 1. Transaction automata for FCFS algorithm (atop) and Earliest Deadline algo-
rithm (down)

Distribution of computation time is controlled by Scheduler Automaton de-
picted on Figure 2 atop. Priorities to transactions are assigned using Priority
Assignment Automaton depicted on Figure 2 down.

The basic behavior of Transaction automata is the same as in the case of
First Come First Serve algorithm. The main modification is the state Sleep and
its adjacent edges. It represents the situation when this transaction is processed
but actually has not assigned resources. An indication of assigned resources is
received from Scheduler automaton through the channel activate[trans_id].
trans_id is unique identifier of each Transaction automaton and activate is

Modeling and Verification of Priority Assignment . . . 153

act_time<=
priorities[tr]+1

!is_active()

abort_notif?
iter++

iter==PAR_TRANS

iter<PAR_TRANS &&
!active_trans[tr]
iter++

act_time>=priorities[tr]+1
preempt!

iter++
iter<PAR_TRANS
tr=priority_list[iter]

!is_active()

iter==PAR_TRANS

iter<PAR_TRANS && active_trans[tr]
activate[tr]!
act_time=0

is_active()
iter=0,
tr=priority_list[0]

start_notif?

calculate()

time < inc_trans[calc_trans].deadline_time - 16
prior=1

time < inc_trans[calc_trans].deadline_time - 12 && time >= inc_trans[calc_trans].deadline_time - 16
prior=2

time >= inc_trans[calc_trans].deadline_time - 12
prior=3start_notif?

Fig. 2. Earliest Deadline algorithm - Scheduler automaton (atop) and Priority Assign-
ment automaton (down)

array of channels. Taking the resources away is announced through the channel
preempt. There are two more channels – abort_notif informs Scheduler au-
tomaton that this transaction is aborted and resources are free and start_notif
is broadcast channel that informs Scheduler about active transaction and si-
multaneously asks Priority Assignment to compute priority for new transaction
(identification of this transaction is shared using global variable calc_trans).

There are two axillary arrays. active_trans contains for each Transaction
automaton a flag if it actually represents some transaction, cor_trans contains
for each Transaction automaton identification of actually represented transaction
from input array.

Scheduler automaton waits in the initial state until it is notified about new
transaction. Then it takes iteratively identifications of Transaction automata
representing transaction according the priority from the array priority_list
which is maintained sorted by Priority Assignment automaton. Each transaction
automaton is activated for the time corresponding to its priority (this can be
chosen in different ways, in this paper it is directly priority, just for technical
reasons increased by one). After all active Transaction automata take a turn, the
whole process is repeated again from the automaton representing transaction
with the highest priority. Function is_active is axillary, it returns true if there
is at least one true in the array active_trans.

Priority Assignment automaton assigns priorities 1, 2 or 3. The highest pri-
ority goes to transactions which have at most 12 time units until deadline, pri-
ority 2 to transactions with 12 to 16 time units before deadline and priority 1
to all other. Those values were chosen without any real meaning. It should be
clear how to add more values of priority and change intervals for them. Func-
tion calculate() sorts identifications of Transaction automata in the array
priority_list according to priorities of transactions they represent.

154 Martin Kot

6 Conclusion

In the previous sections, several timed automata were shown. They form models
of two variants of algorithms for priority assignment used in (real-time) database
management systems. Of course, this were not the only possible models. The pur-
pose was to show that some important aspects of the real-time database system,
such as a priority assignment, can be modeled using such a relatively simple
model as nets of timed automata are. The models can be extended in many
different ways to capture more behavior of those policies and thus allow many
properties to be described as a formula in the logic of Uppaal and then checked
using its verification algorithms. Some properties even can not be expressed us-
ing Uppaal’s modification of CTL. Automata can be modified to bypass this
imperfection, but it can demand a special modification for each query and it
also can increase reachable state space. Another possible solution to this prob-
lem is to try some other verification tool with other query language which can
be our future work.

References

1. Abbott, R. K., Garcia-Molina, H.: Scheduling real-time transactions: a performance
evaluation. ACM Transactions on Database Systems (TODS), Volume 17 , Issue 3,
pages 513 – 560, ACM, September 1992.

2. Alur, R., Dill, D.L.: Automata for modeling real-time systems. Proc. of Int. Collo-
quium on Algorithms, Languages, and Programming, volume 443 of LNCS, pages
322-335, 1990.

3. Behrmann, G., David, A., Larsen, K. G.: A Tutorial on Uppaal. Available on-
line at http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
(March 15, 2010)

4. Berard, B., Bidoit, M., Petit, A., Laroussinie, F., Petrucci, L., Schnoebelen, P.:
Systems and Software Verification, Model-Checking Techniques and Tools. ISBN
978-3540415237, Springer, 2001.

5. Henzinger, T.A.: Symbolic model checking for real-time systems. Information and
computation, 111:193-244, 1994.

6. Kao, B., Garcia-Molina, H.: An Overview of Real-Time Database Systems. Advances
in Real-Time Systems, pages 463-486, Prentice-Hall, Inc., 1995.

7. Kot, M.: Modeling selected real-time database concurrency control protocols in Up-
paal. Innovations in Systems and Software Engineering, Volume 5, Number 2, pages
129-138, ISSN 1614-5046 (Print), ISSN 1614-5054 (Online), Springer, June 2009.

8. Kot, M.: Modeling Real-Time Database Concurrency Control Protocol Two-Phase-
Locking in Uppaal. Proceedings of the International Multiconference on Computer
Science and Information Technology, Volume 3, pages 673-678, ISBN 978-83-60810-
14-9, ISSN 1896-7094, IEEE Computer Society Press, 2008.

9. McMillan, K. L.: Symbolic Model Checking. ISBN 978-0792393801, Springer, 1993.
10. Nyström, D., Nolin, M., Tesanovic, A., Norström, Ch., Hansson, J.: Pessimistic

Concurrency-Control and Versioning to Support Database Pointers in Real-Time
Databases. Proc. of the 16th Euromicro Conference on Real-Time Systems, pages
261-270, IEEE Computer Society, 2004.

11. ParaDiSe (Parallel & Distributed Systems Laboratory): Yahoda verification tools
database. Available on-line at http://anna.fi.muni.cz/yahoda/ (March 15, 2010)

Testing Quasigroup Identities using
Product of Sequence?

Elǐska Ochodková1, Jǐŕı Dvorský1, Václav Snášel1 and Ajith Abraham2

1 Department of Computer Science
FEECS, VŠB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
{eliska.ochodkova, jiri.dvorsky, vaclav.snasel,}@vsb.cz

2 Center of Excellence for Quantifiable,
Quality of Service,

Norwegian University of Science and Technology
O.S. Bragstads plass 2E,

N-7491 Trondheim, Norway
ajith.abraham@ieee.org

Testing Quasigroup Identities using Product of
Sequence

Elǐska Ochodková1, Jǐŕı Dvorský1, Václav Snášel1, Ajith Abraham2

1 Department of Computer Science
Faculty of Electrical Engineering and Computer Science

VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic

{eliska.ochodkova, jiri.dvorsky, vaclav.snasel,}@vsb.cz
2 Center of Excellence for Quantifiable

Quality of Service, Norwegian
University of Science and Technology

O.S. Bragstads plass 2E,
N-7491 Trondheim, Norway
ajith.abraham@ieee.org

Abstract. Non-associative quasigroups are well known combinatorial
designs with many different applications. Many cryptographic algorithms
based on quasigroups primitives have been published. There are several
classifications of quasigroups based on their algebraic properties. In this
paper we propose a new classification of quasigroups based upon strings
(product elements) obtained by a product of a sequence. It is shown in
this paper that the more various results of the product elements, the less
associative quasigroup.

1 Introduction

Almost all known constructions of cryptographic algorithms have made use of
associative algebraic structures such as groups and fields. There is a possibility
to use non-associative quasigroups [7] , well known combinatorial designs with a
lot of theoretical results concerning them, too. Many cryptographic algorithms
based on quasigroups primitives have been published. Proposed cryptographic
algorithms are used for ciphering [15], for constructing pseudorandom genera-
tors [9], hash functions [12], for zero knowledge protocols [2], etc. Majority of
published algorithms can be seen as rather simple experimental algorithms. As
a representative of the ambitious proposals include the stream cipher Edon80
[5] published as an eSTREAM3 candidate, and the NIST’s SHA-34 competition
candidate, hash function EdonR [4].

If a quasigroup is a base of some cryptographic primitive, it is necessary to
examine whether its algebraic properties, structure or other features possess a

3 http://www.ecrypt.eu.org/stream/
4 http://csrc.nist.gov/groups/ST/hash/sha-3/

? This paper was partially supported by GACR 205/09/1079 grant.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 155–162, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

156 Elǐska Ochodková, Jǐŕı Dvorský, Václav Snášel, Ajith Abraham

security risk to the whole cryptographic algorithm. From all existing quasigroups
of a given order we have to select those, which do not have various identities
(as associativity is) and in which various identities appears rarely, or rather not
at all. Properties of small quasigroups (e.g. of order 4), represented as a look-
up table only, may be examined by the exhaustive search. But examination of
identities of the quasigroups of a large order, e.g. 216, may not be easy.

Testing of all possible identities at once may be expensive, both in terms
of time and in terms of space. Therefore we have focused on associativity only.
If associativity holds, then for each element a, b, c ∈ Q : a ◦ (b ◦ c) = (a ◦
b) ◦ c. The situation differs when we work with non-group (i.e. non-associative)
structure: a ◦ (b ◦ c) 6= (a ◦ b) ◦ c. We have made experiments with powers ak

of all elements a ∈ Q, where k = 2, 3, . . . , n, n = |Q|, obtained by a product
of a sequence. Obtained results were evaluated and compared to the number of
associative triples identified for each quasigroup used in experiments. Tested set
of quasigroups was the subset of all distinct quasigroups of order 8. For better
representation of the results, we have used their visualization.

The paper is organized as follows. Motivation of our work is introduced in
Section 2, some necessary concepts are given here too. Concept of a product
of sequence, experiments and their results are described in Section 3. Finally,
Section 4 comprise conclusion and some ideas of future works.

2 Preliminaries

2.1 Basic Concepts

Definition 1. Let A = {a1, a2, . . . , an} be a finite alphabet, n× n Latin square
L of order n is a matrix with entries lij ∈ A, i, j = 1, 2, . . . , n, such that each
row and each column consists of different elements of A.

The numbers of all LSs of order ≤ 11 are known [14]. Number of distinct
Latin squares5 of a given order grows exceedingly quickly with the order. Latin
squares are equivalent to quasigroups. The multiplication table of a quasigroup
of order n is a Latin square of order n, and conversely every Latin square of
order n is the multiplication table of a quasigroup of order n [3].

Definition 2. A quasigroup is a pair (Q, ◦), where ◦ is a binary operation on
(finite) set Q such that for all not necessarily distinct a, b ∈ Q, the equations
a ◦ x = b and y ◦ a = b. have unique solutions. We say that quasigroup (Q, ◦) is
of order n if |Q| = n.

In general, the operation ◦ is neither a commutative nor an associative operation.
Every quasigroup satisfying the associative law has an identity element and is,
hence, a group. There is, for example, 576 distinct quasigroups of order 4, but
only 16 are associative. So non-associative quasigroups dominate heavily.

5 We abbreviate ’Latin square’ to LS.

Testing Quasigroup Identities using Product of Sequence 157

Isotopism. Various methods of generating a practically unlimited number of
quasigroups of a (theoretically) arbitrary order are known and shown in various
publications. One common way of creating quasigroups is through isotopism [3].

Definition 3. Let (Q1, ·) and (Q2, ◦) be two quasigroups with |Q1| = |Q2|. An
ordered triple (α, β, γ) of one-to-one mappings α, β, γ of the set Q1 onto the set
Q2 is called an isotopism of Q1 upon Q2 if α(x)◦β(y) = γ(x·y) for all x, y ∈ Q1.

One can prove that the set of all isotopisms of a quasigroup of order n forms
a group of order (n!)3. It should be noted that the mapping γ permutes the
elements in the table of operations in a quasigroup Q1, while α and β operate
on the elements of the row and column borders of this table, respectively.

2.2 Motivation

Design of many of the existing algorithms is based on quasigroup string trans-
formations [7, 11]. The following concepts are taken from [7].

Consider an alphabet (i.e. a finite set) Q, and denote by Q+ the set of all
nonempty words (i.e. finite strings) formed by the elements of Q. Let (Q, ◦) is a
quasigroup. Let q = q1q2 . . . qn ∈ Q+, qi ∈ Q and l ∈ Q is a fixed element called
leader. For each l ∈ Q we define two functions el◦ and dl◦ : Q+ → Q+ as follows:

el◦(q) = b1b2 . . . bn ⇐⇒ b1 = l ◦ q1, b2 = b1 ◦ q2, . . . , bn = bn−1 ◦ qn (1)

i.e. bi+1 = bi ◦ qi+1 for each i = 0, 1, . . . , n− 1, where b0 = l, and

dl◦(q) = c1c2 . . . cn ⇐⇒ c1 = l ◦ q1, c2 = q1 ◦ q2, . . . , cn = qn−1 ◦ qn (2)

i.e. ci+1 = qi ◦ qi+1 for each i = 0, 1, . . . , n− 1, where q0 = l.
The functions el◦ and dl◦ are called e− and d−transformation of Q+ based

on the operation ◦ with leader l. In general, several quasigroup operations on
the set Q can be used for defining quasigroup transformations. Let, ◦1, ◦2, . . . , ◦k
be such a sequence of (not necessarily distinct) quasigroup transformations. We
may also choose leaders l1, l2, . . . lk ∈ Q (not necessarily distinct), and then the
compositions • of mappings

Ek = El1l2...lk = el1 • el2 • . . . • elk (3)

and
Dk = Dl1l2...lk = dl1 • dl2 • . . . • dlk (4)

are said to be E− and D−transformations of Q+ respectively. In the last nota-
tion, we use el1 for the clarity, but formally we should use el1◦1

.

The experiments with the length of a period of a string generated by e-
transformations are mentioned in [6] and in [10]. Quasigroups are divided into
two groups, to linear and exponential quasigroups. What algebraic properties
must quasigroups of order 4 have to be linear resp. exponential? The quasi-
groups are of a small order (order 4), it is therefore impossible to say whether
(besides identities) it is their structure, which affects the resulting period of the
transformed string. Quasigroups of larger order are more convenient for analog-
ical tests described in Sec. 3.

158 Elǐska Ochodková, Jǐŕı Dvorský, Václav Snášel, Ajith Abraham

3 Experiment with Product of Sequence

Let ◦ be the binary operation. Consider the finite sequence A of elements
a1, . . . , an, ai ∈ A, i = 1, 2, . . . , n, n ≥ 2. What does mean a product of this
sequence? Clearly, for n = 2 we have a1 ◦ a2, by juxtaposition a1a2. For n = 3
a product of the sequence a1, a2, a3 is defined as a set consisting of product
elements a1(a2a3) and (a1a2)a3. The product is denoted as {a1a2a3} and sym-
bol a1a2a3 means any product element. Generally, we can define a product of a
sequence of n elements of the set A as follows [1].

Definition 4. The product of a sequence a1, a2, . . . , an of elements ai ∈ A, i =
1, 2, . . . , n is the set {a1a2 . . . an} defined by:

– for n = 2 the set {a1a2} consist of only one element a1a2,
– for n ≥ 2 the set {a1a2 . . . an} is defined as

{a1a2 . . . an} = {a1}{a2 . . . an} ∪ {a1a2}{a3 . . . an} ∪ . . . ∪ {a1 . . . an−1} ∪ {an}.

The n elements can be joined, without changing their order, in (2n−2)!
n!(n−1)! ways.

For e.g. n = 1, 2 . . . , 10 we obtain 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862 ways of
joining n elements. These numbers are called Catalan numbers [8]. The mth
Catalan number, for m ≥ 0 is given by:

Cm = 1
m+1

(
2m
m

)
= (2m−2)!

m!(m−1)! .

If the operation ◦ on the set A does not hold an associativity law, we can
generally obtain distinct values a1a2 . . . an (not one common value) for all Cm

(m = n − 1, because Catalan numbers are numbered from 0) possible product
elements of the product set {a1a2 . . . an} of the sequence a1, a2, . . . , an .

3.1 Experiment

We have tested product {q1q2 . . . qk} of the sequence q1, q2, . . . , qk, where all
qi ∈ Q, i = 1, 2, . . . , k are equal. So, if all elements are equal, each element is
denoted as a and we will compute a product {aa . . . a︸ ︷︷ ︸

k

} of the sequence a, a, . . . , a︸ ︷︷ ︸
k

.

This product consists of all Ck−1 product elements. Questions is, how many
distinct values q1q2 . . . qk = aa . . . a︸ ︷︷ ︸

k

= ak for all a ∈ Q we obtain. In the ideal

case we can obtain all possible values as a result; the set of possible values has
only max. n values from Q (of order n) for all powers ak.

Better information about the identities in the given quasigroup gain from
the evaluation of particular product elements by the e-transformation defined in
Eq. (2). Therefore all strings b1 . . . b8, see Fig. 1, obtained during evaluation of
product elements of ak (for k = 8, a8 = b8, Fig. 1) were stored. The experiment:

– Generate a quasigroups Q of order n.

Testing Quasigroup Identities using Product of Sequence 159

– For each element a ∈ Q and for each k, 2 ≤ k ≤ n create the product
{aa . . . a} of the sequence a, a, . . . , a, evaluate all Ck−1 product elements ak.

– Store strings b1 . . . bk and compute the number of their occurrence during
evaluation of all product elements ak.

a
�
��

b1
�
��

a

?
b2
�
��

a

?
. . .

. . .

�
��

b7
�
��

a

?
b8 = a8

a

?

Fig. 1. e-transformation used for valuing the product elements ak, k = 8

3.2 Quasigroups used in tests

Quasigroups were represented by corresponding Latin squares. We decided to
use a subset of quasigroups of order 8. We have tested:

– all n! = 40320 distinct quasigroups isotopic to additive group (Z8,+) when
only permutation α was not an identity permutation,

– a set of one million randomly generated quasigroups,
– a set of special quasigroups that consist of e.g. additive group (Z8,+), of six

well described quasigroups published in [13], etc.

3.3 Ideal results

Results are shown on the highest (8th) power of element a. There are C7 = 429
distinct ways how to obtain it.

– Ideally, for each a ∈ Q, i.e. for each a = 0, 1, . . . , 7, we obtain all 8 possible
values of a8 ∈ Q.

– For each a ∈ Q we obtain all 429 distinct strings b1 . . . b8.
– Finally, for each quasigroup (Q, ◦) we ideally obtain all together 429 × 8 =

3432 distinct strings b1 . . . b8 for all a ∈ Q.

3.4 Experimental results

Results of experiments are shown on the set of five chosen quasigroups repre-
sented by their corresponding LSs. The first quasigroup is randomly generated
quasigroup No. 24 represented by L24. The second quasigroup, obtained by non-
affine isotopy [13], is represented by corresponding LS L103. The third quasi-
group is quasigroup 104 obtained by complete mapping [13] and represented

160 Elǐska Ochodková, Jǐŕı Dvorský, Václav Snášel, Ajith Abraham

by LS L104. The fourth quasigroup is quasigroup No. 106, from [13], is repre-
sented by LS L106. The last quasigroup (Q1, ◦) with No. 107 is represented by
corresponding LS L107 (this quasigroup is the additive group (Z8,+)).

Numbers of distinct values a8 for each a ∈ Q for five chosen quasigroups are
shown in Table 1. Only quasigroups No. 24 and 104 have ideal results. Conversely,
quasigroup’s No. 107 results are always the same; a8 is always 0.

Results of the process evaluating the strings b1 . . . b8: the best results have
quasigroups No. 24 and 104. Number of all distinct strings is higher comparing
the remaining three quasigroups. This fact is evident from Table 2 (sums of
distinct strings for each quasigroup and all a ∈ Q are shown). The higher number
of associative triples, the lower the sum of all strings. Results were also visualized,
Sec. 3.5. The greater number of subsquares of different brightness in the image
corresponds with the greater number of distinct strings b1 . . . b8 for each a8, see
Figs. 2 and 3.

Table 1. Number of obtained distinct values of a8 for each a ∈ Q

L24 L103 L104 L106 L107

08 8 8 8 8 1(08 = 0)

18 8 8 8 1 1(18 = 0)

28 8 8 8 2 1(28 = 0)

38 8 1(38 = 3) 8 3 1(38 = 0)

48 8 8 8 4 1(48 = 0)

58 8 8 8 2 1(58 = 0)

68 8 8 8 2 1(68 = 0)

78 8 8 8 2 1(78 = 0)

Table 2. Number of obtained strings b1, . . . , b8 for all a ∈ Q

L24 L103 L104 L106 L107

number of strings 2426 2019 2666 664 307

number of AT 72 70 60 304 512

3.5 Visualization of strings b1, ..., bn valuation

We have focused only on the 8th power of quasigroups elements. For each quasi-
group (Q, ◦) and for each a8, a ∈ Q, we have generated 512× 512 pixels images
where each subsquare (64× 64 pixels) represents one element lij of tested quasi-
group represented by corresponding Latin square L, lij ∈ L. The more visits of
particular element, the brighter subsquare. The brightness of the subsquares is
calculated relatively to the number C7 × ir = 429 × 6 = 2574, where ir = 6

Testing Quasigroup Identities using Product of Sequence 161

is number of strings from a2 to a8 when computing a8. The greater the sum
of distinct strings b1 . . . bn, the greater the number of subsquares of different
brightness in the image.

(a) 08 (b) 18 (c) 28 (d) 38

(e) 48 (f) 58 (g) 68 (h) 78

Fig. 2. Quasigroup No. 104

4 Conclusion

Our goal is to find a new way of testing the properties of large quasigroups and
to explore the interpretation of experimental results. We have reported a new
classification of quasigroups based upon strings (product elements) obtained by
a product of a sequence. As is shown, the more various results of the product
elements, the less associative quasigroup. More precisely, values of all possi-
ble product elements from the product set of a sequence of elements from a
given quasigroup were examined and relationships between experiment results
and associativity of tested quasigroup have been tested. Testing of quasigroup’s
identities through the product of a sequence is an appropriate method with good
results. Experiments will be repeated with quasigroups of larger order. Several
consecutive applications of a quasigroup transformations on the sequences will
be tested, too.

References

1. O. Bor̊uvka. Foundations of the theory of groupoids and groups. Wiley, 1976.

2. J. Dénes, and T. Dénes. Non-associative algebraic system in cryptology. Protection
against ”meet in the middle” attack. Q. and Related Systems 8 (2001): 7–14.

162 Elǐska Ochodková, Jǐŕı Dvorský, Václav Snášel, Ajith Abraham

(a) 08 (b) 18 (c) 28 (d) 38

(e) 48 (f) 58 (g) 68 (h) 78

Fig. 3. Quasigroup No. 107

3. J. Dénes, and A. Keedwell. Latin Squares and their Applications. New York:
Akadémiai Kiadó, Budapest, Academic Press, 1974.

4. D. Gligoroski, et al. EdonR cryptographic hash function. NIST’s SHA-3 hash func-
tion competition, 2008, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

5. D. Gligoroski, S. Markovski, L. Kocarev, and J. Svein. The Stream Cipher Edon80.
The eSTREAM Finalists, LNCS 4986 (2008): 152–169.

6. D. Gligoroski. One-Way Functions and One-Way Permutations Based on Quasi-
group String Transformations. Cryptology ePrint Archive. Report 2005/352.

7. D. Gligoroski, and S. Markovski. Cryptographic potentials of quasigroup transfor-
mations. Talk at EIDMA Cryptography Working Group, Utrecht, 2003.

8. P. Hilton, and J. Pedersen. Catalan Numbers, Their Generalization, and Their
Uses. Journal The Mathematical Intelligencer, 13, no. 2 (1991): 64–75.

9. C. Kościelny. NLPN Sequences over GF(q). Quasigroups an Related Systems 4
(1997): 89–102.

10. S. Markovski, D. Gligoroski, and J. Markovski. Classification of quasigroups by
random walk on torus. J. of Appl. Math. and Comp. 19, no. 1-2 (2005): 57–75.

11. S. Markovski, D. Gligoroski, and L. Kocarev. Unbiased Random Sequences from
Quasigroup String Transformations. in 12th International Workshop FSE, Paris,
LNCS 3557 (2005): 163.

12. S. Markovski, D. Gligoroski, and V. Bakeva. Quasigroup and Hash Functions.
Disc. Math. and Appl., In Proceedings of the 6th ICDMA, Bansko, 2001.

13. K. A. Meyer. A new message authentication code based on the non-associativity
of quasigroups. Ph.D Thesis, 2006,
http://orion.math.iastate.edu/dept/thesisarchive/PHD/KMeyerPhDSp06.pdf

14. B. D. McKay, and I. M. Wanless. On the Number of Latin Squares. Journal Annals
of Combinatorics 9, no. 3 (2005): 335–344.

15. E. Ochodková, and V. Snášel. Cryptographic Algorithms with Uniform Statistics.
In NATO Regional Conference on Military Communications and Informations Sys-
tems Zegrze, Poland: 165–172, 2001.

16. K. Toyoda. On axioms of linear functions. Proc. Imp. Acad. Tokyo, 17 (1941):
221–227.

Database Trends and Directions:
Current Challenges and Opportunities

George Feuerlicht1,2

1 Department of Information Technology, University of Economics, Prague
W. Churchill Sq. 4, Prague, Czech Republic

2 Faculty of Engineering and Information Technology University of Technology, Sydney
P.O. Box 123 Broadway, Sydney, NSW 2007, Australia

jiri@it.uts.edu.au

Database Trends and Directions: Current Challenges

and Opportunities

George Feuerlicht
1,2

1 Department of Information Technology,

University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic
2 Faculty of Engineering and Information Technology,

University of Technology, Sydney,

P.O. Box 123 Broadway, Sydney, NSW 2007, Australia

Abstract. Database management has undergone more than four decades of

evolution producing vast range of research and extensive array of technology

solutions. The database research community and software industry has

responded to numerous challenges resulting from changes in user requirements

and opportunities presented by hardware advances. The relational database

approach as represented by SQL databases has been particularly successful and

one of the most durable paradigms in computing. Most recent database

challenges include internet-scale databases – databases that manage hundreds of

millions of users and cloud databases that use novel techniques for managing

massive amounts of data. In this paper we review the evolution of database

management systems over the last four decades and then focus on the most

recent database developments discussing research and implementation

challenges presented by modern database applications.

Keywords: Relational Databases, Object-Relational Databases, NoSQL

Databases

1 Introduction

Databases, in particular relational databases, are a ubiquitous part of today’s

computing environment. Database management systems support a wide variety of

applications, from business to scientific and more recently various types of internet

and electronic commerce applications. Database management systems (DBMS) are a

core technology in most organizations today and run mission-critical applications that

banks, hospitals, airlines, and most other types of organizations rely on for their day

to day operation. Over the last three decades relational DBMS technology has proven

to be highly adaptable and has evolved to accommodate new application requirements

and the ever-increasing size and complexity of data. But, there are indications that

some of the recently emerging data-intensive applications (e.g. internet searches)

cannot be satisfactorily addressed using existing DBMS technology, and some experts

argue that significant innovation is needed (a new database paradigm) to overcome

the limitations of the current generation of database technology.

The combination of inexpensive and high capacity storage and the prevalence of

digital devices (digital cameras, sound recorders, video recorders, mobile phones,

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 163–174, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

164 George Feuerlicht

RFID readers, and various types of sensors) is creating a deluge of digital

information. According to a recent article in the Economist [1] the amount of data

collected by various sensors, computers, and devices is growing at a compound

annual rate of 60%. A 2008 study by International Data Corporation (IDC) predicted

that over a thousand exabytes of digital data will be generated in 2010 [2]. Scientific

applications in astronomy, earth sciences, etc. (e-science) tend to produce massive

amounts of data; well-documented examples include the Large Hadron Collider at

CERN [3] that generates 40 terabytes of data every second. Storing and analyzing

such volumes of data represents an insurmountable challenge for the current

generation of database technology. Another relatively recent development that may

require a revision of current database paradigms are internet-scale applications (e.g.

search engines, social networking applications, cloud computing services, etc.) that

typically process petabytes of data, use thousands of servers, and serve millions of

users that demand sub-second access to information. Companies like Google,

Facebook, Amazon, and eBay manipulate petabytes of data every day. For example,

Facebook handles 20 petabytes of data, managing 20 billion photographs in 4

different resolutions, growing by 2 billion photographs per month. The Facebook

database is serving 600,000 photographs per second for a user base of 300 million

active users [4]. Google manages vast amounts of semi-structured data: billions of

URLs with associated internet content, crawl metadata, geographic objects (roads,

satellite images, etc.), and hundreds of terabytes of satellite image data, with hundreds

of millions of users and thousands of queries per second [5]. The scale and level of

functionality required for such “big data” applications has not been anticipated by

commercially available DBMSs, and almost invariably internet companies were

forced to develop their own database solutions. But, even more traditional database

applications manage increasingly large volumes of data; for example the retail chain

WalMart handles more than one million transactions per hour, and manages databases

with more than 2.5 petabytes of data.

It is estimated that structured data constitutes only about 5% of the total volume of

generated data, with the rest of this “digital universe” in semi-structured or

unstructured form, making it more difficult to manage and to extract meaningful

information from it. This massive increase in the volume and complexity of data is

challenging available database management techniques and technologies, forcing a re-

evaluation of the direction of database research. Some fundamental questions arise,

including what constitutes a database application. Can applications that search

petabytes of unstructured data (e.g. Web pages) using thousands of servers working in

parallel be classified as database applications?

In this paper we firstly review the past achievements of database research and

technology solutions (section 2), and then discuss the research challenges and

opportunities created by new types of database applications (section 3). The final

sections (section 4) are our conclusions.

Database Trends and Directions: Current Challenges and Opportunities 165

2 Evolution of Database Technology

While the origin of commercial database management systems can be traced to

hierarchical and CODASYL (Conference on Data Systems Languages) databases of

1960s and 1970s it was the emergence of relational DBMS during the 1980s that

started a revolution in data management. The simplicity and elegance of the relational

model proposed by E.F. Codd in 1970 [6] resulted in unprecedented volume of

research activity and the emergence of highly successful relational DBMS (RDBMS)

implementations. Relational databases are a rare example of a theoretical model

preceding and guiding the implementation of technologies. Codd is often credited

with turning the previously black art of data management into an engineering

discipline providing a blueprint for the design and implementation of databases and

the foundation of modern database technology. The basic idea of the relational model

is to represent data as two-dimensional tables with well-defined properties and to use

of a high-level query language for data access. This remarkably simple set of ideas

based on the underlying relational theory had a major impact on the development of

database technology over the following two decades. Relational databases solved two

major interrelated problems of the earlier database approaches. The first achievement

was to de-couple the database from application programs by providing effective

support for data independence. Second, and equally important achievement of the

relational approach was to free database application developers from the burden of

programming navigational access to database records by introducing a non-procedural

query language.

A number of different relational languages were proposed following Codd’s

original description of the relational model, notably a language called QUEL (Ingres

DBMS) developed at University of California at Berkeley, and IBM’s Structured

Query Language (SQL) developed at the IBM San Jose Research Laboratory. The

next major milestone in the evolution of relational databases was the acceptance by

ANSI (American National Standards Institute) of a subset of IBM’s SQL as the first

version of the standard relational database language - SQL86. Although SQL86

lacked many important features of the relational model as originally proposed by

Codd, including key aspects of the model such as referential integrity and domains, it

quickly became universally accepted as the database language for relational DBMS

systems. The shortcomings in SQL86 were largely rectified in the subsequent releases

of the SQL standard (SQL89, SQL92) and SQL has evolved from a relatively simple

language into a comprehensive database language implemented in all significant

RDBMS products today. Many of the enhancements incorporated into SQL over the

last two decades were integral features of the relational model omitted from the earlier

standard specifications, other features, such as triggers, role-based security, and stored

procedures were retrofitted into the standard as a result of their widespread use in

commercial products.

Given the computing environment of the 70s and early 80s, relational databases

were initially used for relatively simple business applications running on large

mainframe computers; data used in such traditional business applications (e.g.

financial and banking) can be structured into tables and stored in a relational database

with relative ease. The main concern of early RDBMS implementations was to ensure

adequate performance, in particular for online transaction processing (OLTP)

166 George Feuerlicht

applications. Initially, relational DBMSs had inferior performance when compared

with earlier DBMS approaches as SQL uses expensive join operations and relies on a

query optimizer to determine how to access data records instead of using faster

pointer-based navigational access implemented in hierarchical and CODASYL

databases. For that reason the main use of relational DBMSs was initially confined to

decision support applications that did not involve users waiting for query results

online. However, as computer hardware became more powerful and optimization

techniques improved, relational systems became the technology of choice in most

application environments, including those with stringent response time requirements.

Relational DBMSs proved to be extraordinarily successful in taking advantage of

new computing platforms, architectures and environments. The first significant

demonstration of the adaptability of relational databases was the extension of the

relational model to cover distributed database environments. The origin of distributed

relational database was IBM’s research project System R* (continuation of the Project

R) which addressed distributed database issues including distributed query

optimization, distributed transactions, and catalog management. Following on from

the System R* database researchers solved most of the problems that concern running

applications transparently across multiple databases. Most commercial RDBMSs

incorporate a whole range of distributed database features, including reliable (two-

phase commit) distributed transactions, optimized distributed queries, and advanced

replication facilities. Similarly, relational DBMSs were among the first technologies

to support applications with large number of users in distributed client/server

environments. This was largely due to the non-procedural nature of SQL, which made

it possible for database queries to be packaged and send over a computer network as

messages from a client application to a database server. This type of client/server

interaction later supplemented with remotely executed database stored procedures

using RPC calls (Remote Procedure Calls) enabled the implementation of scalable

client/server database applications.

Relational DBMSs were quick to take advantage of the new multiprocessor

architectures and provide support for parallel execution of SQL queries. Query

decomposition, necessary for parallel execution is made possible by the declarative

nature of the SQL language enabling queries to be decomposed into well-defined sub-

queries that run in parallel across multiple processors. Parallel SQL was implemented

for shared memory, shared-disk, and shared-nothing parallel architectures with

excellent performance and scalability. Both distributed and parallel databases benefit

from the theoretical underpinning provided by the relational model. As a result of

such developments relational databases became the fastest and most scalable

commercially available DMBS systems.

2.1 Objects and Databases

RDBMs have shown remarkable ability to take advantage of new computing

platforms and continuously improve functionality, performance and scalability to a

point where relational databases became the dominant database technology in 1990s,

supporting mission-critical environments with tens of thousands of users. However,

by mid 90s it became quite clear that the simple data structures and a limited set of

Database Trends and Directions: Current Challenges and Opportunities 167

data types that characterize SQL92 relational DBMSs constitute a significant

drawback when implementing new types of applications that use complex data.

Modern database applications are characterized by four categories of requirements:

(1) need to store and manage large multimedia data objects – images, sound

clips, videos, maps, etc.

(2) requirement for database data types to mirror application-level data types,

including the ability for users to define their own data types as needed by

specific applications

(3) representation of complex relationships, including composition and

aggregation, e.g. multi-level component assemblies used in CAD (Computer-

Aided Design) and similar applications

(4) need for seamless integration with object-oriented programming languages;

with Java in particular

Such requirements are particularly evident in applications that use multimedia data,

GIS (Geographical Information Systems), e-science and web applications. Web

applications typically contain a whole range of multimedia data types such as textual

information, images, video and audio clips, and fragments of program code. Many

modern applications require specialized data types, for example GIS applications

involve spatial data types (e.g. points, lines, polygons, etc.) and spatial operations

(e.g. distance, area, etc.). The initial solution adopted in relational databases to

accommodate non-traditional data (e.g. multimedia, GIS, etc.) was to allow the

storage of large objects (LOBs) as columns in database tables. However, using this

approach multimedia data is treated as unstructured large granularity objects – the

data type of the object is not explicitly recognized by the database type system and

only very limited processing of the object data is supported.

In addition to the need to store large and complex objects in the database, there is

another important requirement that motivated the introduction of object support at the

database level. Most modern applications are developed using object-oriented

programming languages (i.e. Java, C++, C#) and close integration of the database

language SQL with object-oriented programming languages reduces impedance

mismatch (i.e. differences between the type systems, error handling, etc.) with

corresponding improvements in programmer productivity. This requirement, while

not new gained urgency with the emergence of Java as a de facto standard

programming language for internet applications, making it imperative to ensure that

Java objects can be easily mapped into database objects.

While there was a wide agreement within the database research community about

the need to support objects at the database level, there was a considerable divergence

of opinion about how this should be achieved. Two competing approaches emerged:

the revolutionary approach, seeking to develop a completely new fully object-oriented

database solution [7], and the evolutionary approach which took the path of adding

object features to SQL. In early 90s a number of database management systems were

developed ground-up as pure object DBMS (ODBMS) systems with the goal to

address the limitations of relational databases by adopting a completely new database

model with support for objects with unique identifiers, methods, inheritance,

encapsulation, polymorphism and other features commonly associated with object

168 George Feuerlicht

systems. The basic idea was to build on top of object-oriented programming

languages and provide persistence for application objects achieving homogeneous

programming environment with close correspondence between application objects

and objects stored in the database. This (revolutionary) approach popularized by the

Object Database Management Group (ODMG) resulted in the proposal for a new

database model and Object Query Language (OQL). As the commercial ODBMS

products appeared on the market and attempted to capture market share from the

established relational DBMSs, many regarded object-oriented databases as the next

generation of database technology destined to supersede relational databases in much

the same way as relational technology superseded earlier databases approaches.

However, this radical attempt to break with the past has been largely unsuccessful as

ODBMSs have not been able to match RDBMS technology in a number of important

aspects, including reliability, scalability and level of standardization. Even more

importantly, while popular in some niche application areas (e.g. CAD/CAM), object

databases have not been able to address the wider requirements of mainstream

corporate applications.

As a response to ODBMS enthusiasts a number of influential database researches

formed a Committee for Advanced DBMS Function with the objective to define the

requirements for the next generation database systems, and published the Third-

Generation Database Systems Manifesto [8] as a blueprint for future database

development. While recognizing the limitations of relational databases, this important

effort argued that the next generation database systems should subsume the existing

(second generation) DBMSs and preserve the benefits of relational databases, in

particular non-procedural access and data independence. The essential point of

difference from the advocates of object-oriented databases was the insistence on

natural evolution from the existing relational DBMSs technology, and the

implementation of object identity, abstract data types, inheritance, and other object

features as relational database extensions.

The evolutionary approach resulted in a new breed of hybrid Object-Relational

database technology. In retrospect, Object-Relational databases to a very large extent

achieved the original objective of the Third-Generation Database Systems Manifesto,

to preserve the benefits of relational database and at the same time to take advantage

of object features. However, bringing object features into SQL did not turn out to be

an easy task, and the evolutionary approach has struck numerous challenges and

produced a number of changes in direction. At a superficial level there seems to be a

good match between relations and objects, more specifically the concepts of relational

rows and object instances. But, at closer inspection there are deep conflicts between

the two models. For example, encapsulation, a key feature of object systems is

difficult to reconcile with a database query language, as encapsulated data cannot be

queried directly and requires access via methods, imposing unacceptable performance

overheads. Various attempts at the unification of relations and objects using concepts

such as ADTs (Abstract Data Types) have been proposed and discussed extensively

by the ISO WG3 (Working Group 3), the working group responsible for database

language standardization, but failed to gain the necessary wide support. After more

than five years of intensive work by the WG3 Working Group on Database

Languages some of the early ambitious attempts to incorporate object-orientation into

the SQL standard were significantly scaled down. The resulting SQL:1999 standard is

Database Trends and Directions: Current Challenges and Opportunities 169

a very pragmatic solution, which addresses the main limitation of relational databases

by enabling data type extensibility, providing the basis for a rich database type system

[9]. The mainstream database vendors (Oracle, IBM, and others) have strongly

endorsed the object-relational approach and actively participated in the development

of SQL:1999, and most leading DBMS products support object-relational features of

SQL:1999.

2.2 XML and Databases

Another challenge to the dominance of relational databases that echoed the efforts to

incorporate object support into databases in the 90s arose approximately a decade

later with the emergence of XML. XML became the de facto standard formatting

language for semi-structured data and has been widely adopted in e-business

applications as a standard data interchange language and a core standard for Web

Services and related technologies. The availability of a standard XML query language

XQuery [10], and a standard schema definition language XML Schema [11], and

numerous other XML tools and languages (XPath, SAX, DOM, XQL, etc.) provided a

basis for the implementation of XML DBMSs. This lead to the development of a

number of research prototypes, e.g. Lore [12], XTABLES [13], SilkRoute [14], and

some commercial products, e.g. Tamino [15].

Native XML Databases (NXD) that store XML documents in their native format

and use XML query languages for retrieval were regarded by some as a new

generation of DBMS technology destined to supersede relational DBMS. However,

similar to ODBMS, NXD did not replace relational DBMS and remain a solution in

niche application domains, mainly in document and content management applications.

A detailed analysis of the benefits and limitations of NXD databases is available in

[16].

As an alternative to the Native XML Database approach, ORDBMSs (e.g. Oracle)

provide a repository functionality called XML native type to store XML documents in

the database without any conversion, and support updates, queries, indexing, and

views on this data type. Another option available in ORDBMS is to convert XML

data into a relational or object-relational form (so called shredding) and store the

resulting rows of data in corresponding typed tables. The SQL/XML specification

[17] that is a part of the SQL:2003 standard defines the XML data type and provides

mapping rules between XML schemas and SQL structures, as well as functions that

support manipulation of XML data within SQL queries.

3 Database Research Directions

As per our discussion in the previous section (section 2), database research and

associated standardization activities have successfully guided the development of

database technology over the last four decades and SQL relational databases remain

the dominant database technology today. This effort to innovate relational databases

to address the needs of new applications is continuing today. Recent examples of

database innovation include the development of streaming SQL technology that is

170 George Feuerlicht

used to process rapidly flowing data (“data in flight”) minimizing latency in Web 2.0

applications [18], and database appliances that simplify DBMS deployment on cloud

computing platforms [19]. It is also evident from the above discussion that the

relational database approach has proven to be extraordinarily durable, and has adapted

to new hardware architectures as well as new application requirements, successfully

subsuming both object-oriented and XML paradigms. Database research has played

an important role in solving key research problems and facilitating rapid technology

transfer making DBMS technology one of the most successful efforts in computer

science [20]. However, it is equally evident that database research is facing major new

challenges due to explosion of data, novel usage scenarios, and a major shift in

computing architectures. A recent meeting of leading database experts characterized

the present situation as a “turning point in database research” and identified a number

of trends that necessitate re-evaluation of research directions, and at the same time

present new research opportunities. “The Claremont Report on Database Research”

[21] identified the following trends:

(1) Big Data (applications that process very large volumes of data, e.g. Web

search, e-science, etc)

(2) Data analysis as a profit center (increasing number of companies where the

main business is data)

(3) Ubiquity of structured and unstructured data (mainly originating from

various Web sources)

(4) Developer demands (as adoption of open source relational DBMS

accelerates, developers demand more intuitive programming models)

(5) Architectural shifts in computing (emergence of cloud computing services

brings about a fundamental change in software architecture towards parallel

clusters of computers; shift away from increasing CPU clock speed to

increasing the number of processor cores)

The report goes on to identify the following research opportunities:

(1) Re-design of architecture of database engines, to overcome the limitations of

current relational databases (RDBMS provide poor price/performance for

many popular applications, including text indexing, serving web pages, and

media delivery)

(2) Declarative Programming for Emerging Platforms (support for data

independence, declarative programming and cost-based optimization for new

programming models, e.g. MapReduce)

(3) The Interplay of Structured and Unstructured Data (managing a rich collection

of structured, semistructured and unstructured data, spread over many

repositories in the enterprise and on the Web)

(4) Cloud Data Services (improving manageability of cloud databases, Federated

cloud architectures, etc.)

(5) Mobile Applications and Virtual Worlds (manage massive amounts of diverse

user created data, and provide real-time services)

Database Trends and Directions: Current Challenges and Opportunities 171

The report notes that a number of additional research areas were not included as

these are the subject of ongoing investigation, and includes a summary of past reports

in the appendix. Setting agenda for database research is a challenging task, and forty

years of database research and development illustrates both the successes and failures

of such efforts. Database management is a very pragmatic field and many promising

research ideas were discarded as they did not provide any practical benefits, or turned

out not to be a database problem (e.g. deductive databases [22], expert databases [23],

etc.).

4 Conclusions

The Claremont Report on Database Research made an interesting observation noting

that the database research community has doubled in size over the last decade (as

measured by the number of publications and number of database related conference

sessions), but at the same time there was a perception that the quality of reviews (and

consequently, the quality of publications) has been decreasing over time.

Notwithstanding this massive research effort most significant recent innovations came

out of research labs of various companies (e.g. Google, Facebook, etc.), who are

facing urgent challenges of unprecedented size and complexity of data, and millions

of users running many thousands of transactions per second. These developments

have not been fully anticipated by the database research community and interestingly

not even by the traditional database vendors whose products offerings were dwarfed

by the scale and complexity of new application domains.

Recent rise of the NoSQL movement whose proponents regard the existing

relational DBMSs as inefficient, complex and expensive, and favor open source non-

relational solutions, demonstrates this point. For example, the MapReduce

programming model developed by Google [24], and its open source clone Hadoop

[25] initially used to simplify the construction of inverted indexes, has been applied to

text processing and numerous other tasks that require parallel computation over a very

large set of data. MapReduce is designed to automatically parallelize and execute a

program on a large cluster of commodity machines (typically, tens of thousands of

machines), managing data partitioning, task scheduling, inter-machine

communication, and recovery from machine failures. The combination of Hadoop

with Hypertable [26] (an open source version of Google BigTable [26]), enables the

concurrent execution of programs on tens of thousands of machines processing

petabytes of data on a daily basis [27].

These types of applications were traditionally the domain of parallel databases, and

a number of commercial database machines (e.g. Teradata, Oracle Exadata, etc.) have

been available for some time with proven performance characteristics for processing

very large data volumes. The comparison of MapReduce and parallel databases has

been the subject of a recent publication [28], concluding that “using MapReduce to

perform tasks that are best suited for DBMSs yields less than satisfactory results”, and

that MapReduce resembles more Extract-Transform-Load (ETL) system rather than a

DBMS, and therefore is a complimentary technology rather than competing with

DBMS. But, these conclusions are being hotly disputed by MapReduce proponents

172 George Feuerlicht

who claim that the scalability benefits of this approach will eventually “relegate

relational DBMS to the status of legacy technology”. Database vendors are taking

different approach to adopting the open source version of MapReduce (Hadoop),

some implementing this technology in their products (e.g. Teradata, and IBM), while

others (e.g. Microsoft) adopting a more cautious attitude [29].

Other vendors, notably Netezza have developed massively parallel database

machines (Data Warehouse Appliances) that perform data filtering directly on the

disk so that only the relevant portions of the data are propagated to the SQL database,

gaining significant performance improvements over more traditional parallel database

architectures. Additional functionality such as data analytics functions can also be

implemented directly in hardware, achieving further performance gains [30]. Such

approaches are using standard SQL database technology and are betting on further

advances in computer hardware (larger and less expensive computer memory and

more powerful CPUs as predicted by Moore’s Law), and innovative, massively

parallel database architectures to overcome the challenges of big data.

A key to understanding present and likely future database developments is a firm

view of what constitutes the database paradigm, i.e. defining the scope of database

research problems. Many of the recent challenges (in particular those faced by

internet companies such as Google, Facebook, etc.), concern situations where three

key elements that normally constitute a database environment are not present. While

these applications are clearly data-intensive, there is no database (data is not loaded

into a database), there is no database schema (data is mostly semi-structured and

sparse), and there is no support for database queries (application involve mainly text

search over semi-structured data). It is therefore difficult to regard such applications

as database applications. Learning from history we can observe that a similar situation

arose in the 1990s with Object-Oriented databases and later with XML databases, and

conclude that there is little benefit in applying database solutions to problems that do

not fit the database paradigm.

ACKNOWLEDGMENT

This research has been supported by GAČR (Grant Agency, Czech Republic) grant No.

P403/10/0092 - Advanced Principles and Models for Enterprise ICT Management, University

of Economics, Prague IGA (Internal Grant Agency) grant No. IG406040 – Cloud Computing

Adoption and Governance, and the Research Centre for Human Centered Technology Design at

the University of Technology, Sydney.

References

1. Data, data everywhere - A special report on managing information, in The

Economist. 2010.

2. Gantz, J.F., The Diverse and Exploding Digital Universe. 2008, IDC. IDC.

http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-

universe.pdf

3. CERN. The Large Hadron Collider. 2010 14 MArch 2010]; CERN].

Available from: http://public.web.cern.ch/public/en/LHC/LHC-en.html.

Database Trends and Directions: Current Challenges and Opportunities 173

4. Rothschild, J. High Performance at Massive Scale – Lessons learned at

Facebook. CNS 2009 Lecture Series Archives 2009 [cited 2010 15 March

2010]; Centre for Networked Systems Lecture]. Available from:

http://cns.ucsd.edu/lecturearchive09.shtml.

5. Dean, J. Designs, Lessons and Advice from Building Large Distributed

Systems. 2009 [cited 2010 18 March 2010]; Available from:

http://www.odbms.org/download/dean-keynote-ladis2009.pdf.

6. Codd, E.F., A relational model of data for large shared data banks.

Commun. ACM, 1970. 13(6): p. 377-387.

7. Atkinson, M., et al. The object-oriented database system manifesto. 1989:

Citeseer.

8. Stonebraker, M., et al., Third-generation database system manifesto.

SIGMOD Rec., 1990. 19(3): p. 31-44.

9. Eisenberg, A. and J. Melton, SQL: 1999, formerly known as SQL3. ACM

SIGMOD Record, 1999. 28(1): p. 138.

10. Chamberlin, D. XQuery: A query language for XML. 2003: ACM New York,

NY, USA.

11. W3C. XML Schema. 2010 [cited 2010 18 March 2010]; XML Schema

Standard Sepcification]. Available from: http://www.w3.org/XML/Schema.

12. Widom, J., Data management for XML: Research directions. Bulletin of the

Technical Committee on: p. 44.

13. Funderburk, J., et al., XTABLES: Bridging relational technology and XML.

IBM Systems Journal, 2002. 41(4): p. 616-641.

14. Fernández, M., W. Tan, and D. Suciu, SilkRoute: trading between relations

and XML. Computer Networks, 2000. 33(1-6): p. 723-745.

15. Schöning, H. Tamino-a DBMS designed for XML. 2001: IEEE Computer

Society.

16. Bourret, R. XML and Databases. 2005 [cited 2010 18 March 2010];

Available from:

http://ece.ut.ac.ir/DBRG/seminars/AdvancedDB/2006/Sanamrad-

Hoseininasab/Refrences/6.pdf.

17. Eisenberg, A., et al., SQL: 2003 has been published. ACM SIGMOD

Record, 2004. 33(1): p. 119-126.

18. Hyde, J., Data in flight. Commun. ACM. 53(1): p. 48-52.

19. Aboulnaga, A., et al., Deploying Database Appliances in the Cloud. Data

Engineering, 2009. 32(1): p. 13.

20. Silberschatz, A., M. Stonebraker, and J. Ullman, Database research:

Achievements and opportunities into the 21st century. SIGMOD RECORD,

1996. 25(1): p. 52–63.

21. Agrawal, R., et al., The Claremont report on database research. SIGMOD

Rec., 2008. 37(3): p. 9-19.

22. Ramakrishnan, R. and J. Ullman, A survey of deductive database systems.

The journal of logic programming, 1995. 23(2): p. 125-149.

23. Kerschberg, L., Expert database systems: Knowledge/data management

environments for intelligent information systems. Information Systems,

1990. 15(1): p. 151-160.

174 George Feuerlicht

24. Dean, J. and S. Ghemawat, MapReduce: Simplified data processing on large

clusters.

25. Borthakur, D., The hadoop distributed file system: Architecture and design.

Hadoop Project Website, 2007.

26. Chang, F., et al. Bigtable: A distributed storage system for structured data.

in OSDI '06. 2006.

27. Lai, E., No to SQL? Anti-database movement gains steam, in

Computerworld. 2009.

http://www.computerworld.com/s/article/9135086/No_to_SQL_Anti_databa

se_movement_gains_steam_

28. Stonebraker, M., et al., MapReduce and parallel DBMSs: friends or foes?

Commun. ACM. 53(1): p. 64-71.

29. Lai, E., Big three database vendors diverge on Hadoop, in Computerworld.

2009, IDG.

http://www.computerworld.com/s/article/9142406/Big_three_database_vend

ors_diverge_on_Hadoop

30. Morgan, T.P. Netezza to bake analytics into appliances. 2010 [cited 2010

18 March 2010]; Available from:

http://www.theregister.co.uk/2010/02/24/netezza_data_analytics/.

Content-based retrieval of compressed images

Gerald Schaefer

Department of Computer Science
Loughborough University

Loughborough, U.K.
gerald.schaefer@ieee.org

Content-based retrieval of compressed images

Gerald Schaefer

Department of Computer Science
Loughborough University

Loughborough, U.K.
gerald.schaefer@ieee.org

Abstract. Content-based image retrieval allows search for pictures in
large image databases without keyword or text annotations. Much pro-
gress has been made in deriving useful image features with most of these
features being extracted from (uncompressed) pixel data. However, the
vast majority of images today are stored in compressed form due to lim-
itations in terms of storage and bandwidth resources. In this paper, we
therefore investigate a different approach, namely that of compressed-
domain image retrieval, and present some compressed-domain image re-
trieval techniques that we have developed over the past years. In partic-
ular, a method for retrieving images compressed by vector quantisation,
that uses codebook information as image features, is presented. Retrieval
of losslessly compressed images obtained using lossless JPEG, can be re-
trieved using information derived from the Huffman coding tables of the
compressed files. Finally, CVPIC, a 4-th criterion image compression
technique is introduced and it is demonstrated that compressed-domain
image retrieval based on CVPIC is not only able to match the perfor-
mance of common retrieval techniques on uncompressed images, but even
clearly outperforms these.

Keywords: content-based image retrieval (CBIR), image compression, compressed-

domain image retrieval, vector quantisation, lossless JPEG, CVPIC

1 Introduction

With the recent explosion in availability of digital imagery the need for content-
based image retrieval (CBIR) is ever increasing. While many methods have been
suggested in the literature, only few take into account the fact that - due to
limited resources such as disk space and bandwidth - virtually all images are
stored in compressed form. In order to process them for CBIR they first need to
be uncompressed and the features calculated in the pixel domain. The desire for
techniques that operate directly in the compressed domain providing, so-called
midstream content access, is therefore evident [18].

In this paper, we introduce several techniques that perform compressed-
domain image retrieval. In general there are two approaches. The first is based
on existing compression techniques and tries to extract useful information from

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 175–185, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

176 Gerald Schaefer

the compressed data streams produced by these. The second approach is to
develop so-called 4-th criterion compression algorithms where the data in com-
pressed form is directly visually meaningful and can hence be exploited for image
retrieval. We will cover both approaches in this paper.

2 Content-based image retrieval

Since textual annotations are not available for most images, searching for par-
ticular pictures becomes an inherently difficult task. Luckily, a lot of research
has been conducted over the last two decades leading to various approaches for
content-based image retrieval [30, 2]. Content-based image retrieval (CBIR) does
not rely on textual attributes but allows search based on features that are di-
rectly extracted from the images [30]. This however is, not surprisingly, rather
challenging and often relies on the notion of visual similarity between images or
image regions.

While humans are capable of effortlessly matching similar images or objects,
machine vision research still has a long way to go before it will reach a similar
performance for computers. Currently, many retrieval approaches are based on
low-level features such as colour, texture, and shape features, leaving a ‘semantic
gap’ to the high-level understanding of users [30].

3 Image compression and compressed-domain CBIR

Despite continuous advances in technology both storage space and bandwidth are
still limited. In terms of the storage and transmission of images (e.g. through the
Internet) this means that images have to be stored in compressed form. However,
to achieve this compression some of the original image information needs to be
sacrificed; that is, the compressed image will differ from the original image.
Consequently, image descriptors obtained from compressed images will also be
somewhat different from those derived from their uncompressed counterparts.
In one of our studies [28], we investigated the effect image compression has on
the performance of several popular CBIR techniques [33, 4, 32, 17, 6, 1]. We found
that the resulting drop in retrieval performance is small yet not negligible [28].

Although most images exist only in compressed form, almost all CBIR tech-
niques operate in the pixel domain. In contrast, compressed domain techniques
operate directly on the compressed data without the need for decompression [13].
Compressed domain CBIR can be performed either based on existing compres-
sion formats such as JPEG [19] or vector quantisation [25], or employing so-
called 4-th criterion compression techniques where the compressed information
is directly visually meaningful [18].

Content-based retrieval of compressed images 177

4 Compressed-domain CBIR based on vector
quantisation

4.1 Vector quantisation

Vector quantisation (VQ [5]) represents a mapping that assigns to each input
vector a codebook vector achieving compression by setting the size of the code-
book small relative to the possible gamut of input vectors. In particular, in terms
of VQ image compression, an image is divided into a set of L-dimensional vectors
I by splitting it into image blocks where each block forms a vector. A codebook
C with N entries is then found. There are many ways how this can be achieved.
In our approach we start with one codebook entry (the mean of the distribu-
tion) and then iteratively add new entries by identifying and splitting the cluster
which has the largest variance. After the desired codebook size has been reached
we apply the LBG algorithm [12] to optimise the generated codebook. Once a
codebook is defined the input vectors can be mapped to vectors (codewords) of
the codebook according to a nearest neighbour rule:

Ii → Cj iff d(Ii, Cj) ≤ d(Ii, Ck) ∀ Ck ∈ C (1)

The respective image block can then be represented by an index to the closest
codeword only.

4.2 CBIR through VQ codebook matching

Even though information is lost due to the compression, image retrieval based
on VQ data not only provides information on the colour content, as do colour
histograms for example, but also on the spatial information (encompassing tex-
tural and shape attributes) of the image, which is due to the image being divided
into blocks and the blocks coded as a whole.

In our algorithm we use block sizes of 4×4 pixels thus giving vectors of length
48 for colour images. In contrast to previous methods which use a universal code-
book for all images, and then base their retrieval technique on histograms [10]
or binarised histograms [9] of codebook indices, codebooks were generated on a
per image basis ensuring that image quality is high, even for a small number of
codes. Also, this not only makes image distribution easier (the there is no need
for codebook negotiation between encoder and decoder) but also guarantees that
the information stored by the codevectors is optimally adapted for each image.
Indeed, this is the key feature that is used in our technique. Because prototype
codes encompass precise information about an image, images can be compared
by using the content stored in their respective codebooks.

There are several ways to compare 2 L-dimensional point sets CA and CB .
One choice would be to use the Hausdorff distance [8]. However, as this is based
on a max-min operator, the original Hausdorff distance can become highly depen-
dent on outliers and so is statistically not very robust. A better way to compare
two VQ codebooks would therefore be to use a variant of the Hausdorff distance

178 Gerald Schaefer

which shows more robustness. In our approach, we use a Modified Hausdorff
distance HDmod defined as

HDmod = max(hdmod(CA, CB),hdmod(CB , CA)) (2)

with

hdmod(CA, CB) =
1
N

N∑

i=1

min
j
‖CA(i)− CB(j)‖ (3)

where ‖.‖ denotes some underlying norm, in our case the L2 norm. Rather than
taking the maximum of the minima as in the original Hausdorff distance we use
the average of the minimum which makes the distance measure less sensitive to
outliers [3, 26].

After calculating the distances to all images in the database, the images can
be ranked in order of their similarity to a given query image.

4.3 Experimental results

We performed VQ image retrieval on the MPEG-7 Common colour dataset [15].
This database consists of 5466 images and a set of 50 queries with predefined
ground truth images. We compressed the images with codebooks of size 64, and
performed image retrieval based on the Modified Hausdorff distances between
the VQ codebooks. We use the MPEG-7 Normalised Modified Retrieval Rank
(NMRR) [15] as the standard performance measure for this data set. The NMRR
is defined as

NMRR =
MRR(q)

K + 1/2−NG/2
(4)

where MRR(q) = µ(q) − 1/2 − NG(q)/2 and µ(q) =
∑NG(q)

i=1 ri/NG(q). NG(q)
is the number of ground truth images for the qth query image and ri de-
notes the retrieved rank. For K we use the MPEG-7 recommendation K =
min(4NG(q), 2maxq(NG(q))).

The results achieved give an average NMRR of 0.1196. In comparison, im-
age retrieval based on colour histograms [33] results in an average NMRR of
0.1075. The slight drop in performance can be explained with the fact that we
are essentially compressing the already severely (JPEG) compressed images of
the MPEG-7 dataset again and hence part of the information stored in the VQ
codebooks can be attributed to compression artefacts rather than to image con-
tent.

5 Compressed-domain CBIR based on lossless JPEG

5.1 Lossless JPEG compression

Predictive image coders work on the basis that images tend to change slowly
over most areas of an image. Consequently, most neighbouring pixels will have

Content-based retrieval of compressed images 179

similar values. A pixel at location (i, j) is predicted, based on the values of its
neighbouring pixels as

P ′
(i,j) =

∑

k<i,l<j

ω(k,l)P(k,l) (5)

where P ′ represents the prediction, P are the actual pixel values of the neigh-
bouring pixels, and ω describe weights used for the prediction. In this paper we
adapt one of the predictors of the lossless JPEG [34] scheme, in particular, the
JPEG-7 predictor where pixels are predicted as the the average of their top and
left neighbours (i.e. ω(i−1,j) = ω(i,j−1) = 0.5).

Once a pixel has been predicted it is encoded as the difference between its
actual value and its prediction:

D(i,j) = P(i,j) − P ′
(i,j) (6)

This has the advantage that now differences close to 0 are much more likely
than higher differences. Consequently, an entropy encoding stage, which assigns
shorter codewords to more frequent codes and longer codewords to rarer events,
is then applied. In our framework we use a Huffman coder [7] for performing
the entropy coding. Huffman coders are optimal in the sense that they allow
encoding data using the minimal number of bits (with the restriction that each
codeword has an integer number of bits).

The losslessly compressed image then comprises two parts: the Huffman table,
and the differences now represented as indices into the Huffman table.

5.2 CBIR in the losslessly compressed domain

Difference histogram In order to find a way to index the compressed images
directly in the encoded domain, we first reverse the entropy coding stage. This
is also being done by all other methods that operate in the compressed domain
where entropy coding is part of the compression algorithm [13]. After this, we
naturally end up with the difference data D(i,j) for each pixel. We now want
to make explicit what this data actually means. The prediction of each pixel
is essentially a statistical description of its neighbourhood. By calculating the
difference to the actual pixel value, the resulting descriptor D(i,j) represents the
change of the pixel compared to its neighbourhood. Texture can be defined as
a property that pixels exhibit in comparison to their neighbourhood. Therefore,
the differences between the predictions and the actual pixel values also define a
description of the textural properties of the image.

Hence, we propose to use the difference data directly as a description of the
image content. Building histograms of the differences seems to provide a good
choice. However, one has to be aware that the distribution of the prediction
differences is not uniform. Differences close to 0 are much more likely than higher
values. To rectify this we first apply a non-linear transformation to the predictor
differences:

180 Gerald Schaefer

D′
(i,j) =

−M − log(−D(i,j)) if D(i,j) < 0
0 if D(i,j) = 0
M + log(D(i,j)) if D(i,j) > 0

(7)

where M = log(1/255), i.e. the transformed value of the smallest prediction
difference possible.

After this transformation we build a uniformly quantised histogram of the
D′s. Once histograms Hi are built, they can be compared using histogram in-
tersection, as described in [33]

d(H1,H2) =
∑

k

min{H1(k),H2(k)} (8)

where H1 and H2 are the histograms of the D′ coefficients. Image retrieval is
performed by calculating the distances between a query image and all images in
the database, and returning the closest matches.

Codebook matching As we have mentioned above, all algorithms to date that
operate in the compressed domain of images need to reverse the entropy coding
as a first step. We will now introduce a technique that, based on the predictive
coding framework outlined in Section 5.1, allows for image indexing directly in
the compressed image data without the need to undo the entropy coding. In
particular, we will use the Huffman codebook itself as the index.

The Huffman codebook contains one codeword for each possible difference
in the interval [−255; 255]. Shorter codewords are assigned to events that are
more probable. Consequently, the length of a Huffman codeword is indirectly
proportional to its frequency in the image. That is, the codebook contains ap-
proximately the same information as a histogram of the data! Hence to compare
two images, one can compare their codebooks. To do this we calculate the cu-
mulative difference of codeword lengths

d(B1, B2) =
∑

−255<k<255

|B1(k)−B2(k)| (9)

where B1 and B2 are the Huffman codebooks of two images, and |.| is the L1

norm. Codewords that are not present in a codebook are assigned the maximum
length that is to be found in the respective codebook before the comparison.

5.3 Experimental Results

We took 80 images of the VisTex [14] image set, a collection of colour texture
images from MIT, and extracted from each of the 512 × 512 pixel images two
256 × 256 non-overlapping regions. One of each was assigned model while the
others represent the query images. In order to acquire the following results, each
query image was compared to each model image, and as we know which one is
the corresponding picture the rank in which the correct image is retrieved can

Content-based retrieval of compressed images 181

be recorded. As performance measure, we use the match percentile [33] defined
as

MP =
N −R

N − 1
(10)

or rather the average match percentile over all query images as a measure of
goodness for assessing retrieval performance. Here N is the number of model
images in the database, and R is the rank, i.e. the position of the correct match
in the retrieval list.

We encoded all images using the JPEG-7 predictor and Huffman compres-
sion as explained in Section 5.1. As we deal with RGB images, each channel was
coded separately. Image retrieval was then performed by computing the differ-
ence histograms (35 × 35 × 35 bins) as defined in Section 5.2 and calculating
the histogram intersection (Equation (8)) of each query image to each of the
models, before the returned models were ranked according to their distance to
the query. The average match percentile achieved over the whole dataset is 98.20
with 88.75% of the correct images retrieved in 1st rank.

In order to compare this performance, we also applied the rotation invariant
version of the LBP operator [16] to the images. LBP has been shown to represent
a powerful texture classification technique that outperforms most other standard
texture algorithms [16]. The average match percentile, based on the resulting
36 × 36 × 36 LBP histograms is 98.50 (92.50% 1st rank retrievals). Hence we
see that our proposed algorithm performs comparable to current state-of-the-art
techniques.

Finally, we also evaluated the performance of our codebook matching algo-
rithm from Section 5.2 on the VisTex dataset. The result is an average match
percentile of 96.36 with 67.50% first rank retrievals. We see confirmed what we
suspected, namely that the performance drops due to the inexactness of the rep-
resentation, and also due to the lack of measurement of correlation between the
channels (which for 3-dimensional histogram is preserved). However, a match
percentile of more than 96 is still a very good basis to reject most of the images
and leave only those that are close to the query.

6 Compressed-domain CBIR based on CVPIC

6.1 Colour Visual Pattern Image Coding

Colour Visual Pattern Image Coding (CVPIC) divides an image into small 4×4
pixel blocks and then matches each block to one of a pre-defined classes of pat-
terns (14 edge patterns shown in Figure 1, plus a uniform block, i.e. a block
without an edge), followed by quantisation of the colour information. The com-
pressed data stream contains direct information about colour and shape infor-
mation of the image, and we have introduced various techniques for performing
compressed domain CBIR in the CVPIC domain [21, 20, 22, 24, 23]. In here, we
focus on the approach presented in [23].

182 Gerald Schaefer

Fig. 1. The 14 edge patterns used in CVPIC [27].

6.2 CBIR based on CVPIC data

The data that is readily available in CVPIC compressed images is the colour
information of each of the 4 × 4 image blocks, and information on the spatial
characteristics of each block, in particular on whether a given block is identified
as a uniform block (a block with no or little variation) or a pattern block (a
block where an edge or gradient has been detected). Furthermore, each pattern
block is assigned to one of 14 universally predefined classes according to the
orientation and position of the edge within the block. We make direct use of this
information to derive an image retrieval algorithm that utilises both colour and
shape information. The colour information is summarised similar to colour co-
herence vectors introduced in [17] and the border/interior pixel approach in [31]
which both show that dividing the pixels of an image into those that are part of
a uniform area and those that are not can improve retrieval performance.

In essence we create two colour histograms, one for uniform blocks and one for
non-uniform (pattern) blocks. Shape descriptors are often calculated as statisti-
cal summaries of local edge information such as in [11] where the edge orientation
and magnitude is determined at each pixel location and an edge histogram cal-
culated. Exploiting the CVPIC image structure, an effective shape descriptor
can be determined very efficiently. Since each (pattern) block contains exactly
one (pre-calculated) edge and there are 14 different patterns we simply build
a 1 × 14 histogram of the edge indices. CVPIC image retrieval based on both
colour and shape features can then be performed by calculating the combined
difference (a weighted L1 norm) between all three histograms.

Table 1. Retrieval results obtained on the UCID dataset in terms of modified average
match percentile [29].

MP

Colour histograms [33] 90.47
Colour coherence vectors [17] 91.03
Border/interior pixel histograms [31] 91.27
Colour correlograms [6] 89.96
CVPIC 94.24

Content-based retrieval of compressed images 183

Fig. 2. Sample query together with top five ranked images returned by (from top to
bottom) colour histograms, colour coherence vectors, border/interior pixel histograms,
colour correlograms, and CVPIC retrieval.

6.3 Experimental results

Results on the UCID dataset [29], shown in Table 1 in terms of match percentile,
confirm that this approach is not only capable of performing efficient and effec-
tive compressed domain image retrieval but that our algorithm also outperforms
various popular CBIR techniques, even when these are run on uncompressed im-
ages. An example query with the top five retrieved images obtained from several
pixel domain CBIR methods and our CVPIC techniques is shown in Figure 2.

7 Conclusions

Compressed-domain image retrieval provides an interesting alternative to com-
mon image retrieval algorithms as it provides the advantage that image features

184 Gerald Schaefer

are extracted directly from the compressed data stream of images. In this paper
we have presented several compressed domain techniques that allow efficient and
effective querying of large image databases. In particular, we have presented tech-
niques based on vector quantisation, lossless JPEG compression, and CVPIC,
a 4-th criterion compression algorithm. Experimental results have shown that
the introduced techniques are able to match or even exceed the performance of
common pixel-based retrieval algorithms.

References

1. L. Cinque, S. Levialdi, and A. Pellicano. Color-based image retrieval using spatial-
chromatic histograms. In IEEE Int. Conf. Multimedia Computing and Systems,
pages 969–973, 1999.

2. R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences, and
trends of the new age. ACM Computing Surveys, 40(2):1–60, 2008.

3. M-P. Dubiusson and A.K. Jain. A modified Hausdorff distance for object matching.
In 12th IEEE Int. Conference on Pattern Recognition, pages 566–568, 1994.

4. C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber.
Efficient and effective querying by image content. journal of Intelligent Information
Retrieval, 3(3/4):231–262, 1994.

5. R.M. Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4–29, 1984.
6. J. Huang, S.R. Kumar, M. Mitra, W-J. Zhu, and R. Zabih. Image indexing us-

ing color correlograms. In IEEE Int. Conference Computer Vision and Pattern
Recognition, pages 762–768, 1997.

7. D.A. Huffman. A method for the construction of minimum redundancy codes.
Proceedings of the Institute of Radio Engineers, 40:1098–1101, 1952.

8. D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images
using the Hausdorff distance. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 15(9):850–863, 1993.

9. F. Idris and S. Panchanathan. Storage and retrieval of compressed images. IEEE
Trans. Consumer Electronics, 41(3):937–941, 1995.

10. F. Idris and S. Panchanathan. Image and video indexing using vector quantization.
Machine Vision and Applications, 10:43–50, 1997.

11. A.K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern Recog-
nition, 29(8):1233–1244, 1996.

12. Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer design.
IEEE Trans. Communications, 28:84–95, 1980.

13. M. Mandal, F. Idris, and S. Panchanathan. A critical evaluation of image and video
indexing techniques in the compressed domain. Image and Vision Computing,
17(7):513–529, 1999.

14. MIT. VisTex Vision Texture database. http://www-white.media.mit.edu/

vismod/imagery/VisionTexture/vistex.html.
15. Moving Picture Experts Group. Description of core experiments for MPEG-7

color/texture descriptors. Technical Report ISO/IEC JTC1/SC29/WG11/ N2929,
1999.

16. T. Ojala, M. Pietikäinen, and T. Menpää. Gray scale and rotation invariant texture
classification with local binary patterns. In 6th European Conference on Computer
Vision, pages 404–420, 2000.

Content-based retrieval of compressed images 185

17. G. Pass and R. Zabih. Histogram refinement for content-based image retrieval. In
3rd IEEE Workshop on Applications of Computer Vision, pages 96–102, 1996.

18. R.W. Picard. Content access for image/video coding: The fourth criterion. Tech-
nical Report 195, MIT Media Lab, 1994.

19. G. Schaefer. JPEG image retrieval by simple operators. In 2nd International
Workshop on Content-Based Multimedia Indexing, pages 207–214, 2001.

20. G. Schaefer. Mistream content access of visual pattern coded imagery. In 4th Int.
Workshop on Multimedia Data and Document Engineering, 2004.

21. G. Schaefer and S. Lieutaud. Colour and shape based image retrieval for CVPIC
coded images. In Int. Conference on Imaging Science, Systems, and Technology,
pages 456–461, 2004.

22. G. Schaefer and S. Lieutaud. CVPIC based uniform/non-uniform colour his-
tograms for compressed domain image retrieval. In 7th Int. Conference on VISual
Information Systems, pages 344–348, 2004.

23. G. Schaefer and S. Lieutaud. CVPIC compressed domain image retrieval by colour
and shape. In Int. Conference on Image Analysis and Recognition, volume 3211 of
Springer Lecture Notes on Computer Science, pages 778–786, 2004.

24. G. Schaefer, S. Lieutaud, and G. Qiu. CVPIC image retrieval based on block colour
co-occurance matrix and pattern histogram. In IEEE Int. Conference on Image
Processing, pages 413–416, 2004.

25. G. Schaefer and W. Naumienko. Midstream content access by VQ codebook match-
ing. In Int. Conference on Imaging Science, Systems, and Technology, pages 170–
176, 2003.

26. G. Schaefer, G. Qiu, and G. Finlayson. Retrieval of palettised colour images.
In Storage and Retrieval for Image and Video Databases VIII, volume 3972 of
Proceedings of SPIE, pages 483–493, 2000.

27. G. Schaefer, G. Qiu, and M.R. Luo. Visual pattern based colour image compression.
In Visual Communication and Image Processing ’99, volume 3653 of Proceedings
of SPIE, pages 989–997, 1999.

28. G. Schaefer and S. Ruszala. Effective and efficient browsing of image databases.
Int. Journal of Imaging Systems and Technology, 18:137–145, 2008.

29. G. Schaefer and M. Stich. UCID - An Uncompressed Colour Image Database. In
Storage and Retrieval Methods and Applications for Multimedia 2004, volume 5307
of Proceedings of SPIE, pages 472–480, 2004.

30. A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based
image retrieval at the end of the early years. IEEE Trans. Pattern Analysis and
Machine Intelligence, 22(12):1249–1380, 2000.

31. R.O. Stehling, M.A. Nascimento, and A.X. Falcao. A compact and efficient image
retrieval approach based on border/interior pixel classification. In Proc. 11th Int.
Conf. on Information and Knowledge Management, pages 102–109, 2002.

32. M. Stricker and M. Orengo. Similarity of color images. In Conf. on Storage and
Retrieval for Image and Video Databases III, volume 2420 of Proceedings of SPIE,
pages 381–392, 1995.

33. M.J. Swain and D.H. Ballard. Color indexing. Int. Journal of Computer Vision,
7(11):11–32, 1991.

34. G.K. Wallace. The JPEG still picture compression standard. Communications of
the ACM, 34(4):30–44, 1991.

Chosen Problems of Designing Effective
Multiple Classifier Systems

Michal Wozniak

Wroclaw University of Technology, Wroclaw, Poland

Chosen Problems of Designing Effective
Multiple Classifier Systems

Michal Wozniak, Ph.D., D.Sc.

Wroclaw University of Technology, Wroclaw, Poland

Abstract. We encounter pattern recognition problems on an everyday
basis. Therefore, methods of automatic pattern recognition form one of
the main trends in Artificial Intelligence. The aim of each such recogni-
tion task is to classify a given object of interest by assigning it to some
predefined category, on the basis of observing the features of the ob-
ject. There is much current research into developing even more efficient
and accurate recognition algorithms, like neural networks, statistical and
symbolic learning to name only a few. Multiple classifier systems (MCSs)
are currently the focus of intense research. In this conceptual approach,
the main effort is concentrated on combining knowledge of the set of ele-
mentary classifiers. There is a number of important issues while building
the aforementioned MCSs. Firstly, how should classifiers be selected such
that the decision making quality of the ensemble is superior to that of
any individual classifier. This can be considered the problem of classifier
synergy. So it seems interesting to select members of a committee with
possibly different components. Another important issue is the choice of a
collective decision making method. The first group of methods includes
algorithms for classifier fusion at the level of their responses The sec-
ond group of collective decision making methods exploit classifier fusion
based on discriminant analysis, the main form of which are the posterior
probability estimators, associated with probabilistic models of a given
pattern recognition task. Design of new fusion classification models, es-
pecially those with a trained fuser block, are currently the focus of intense
research.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 175–175, ISBN 978-80-7378-116-3.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 186–186, ISBN 978-80-7378-116-3.
Charles University in Prague, MFF, Department of Software Engineering, 2010.

Author Index

Abraham, Ajith, 108, 155

Bartoš, Tomáš, 84

Dlugolinský, Štefan, 50
Dráždilová, Pavla, 118
Dvorský, Jǐŕı, 108, 155

Feuerlicht, George, 163

Gajdoš, Petr, 13

Hoksza, David, 1

Kasarda, Ján, 84
Kĺımek, Jakub, 96
Kot, Martin, 147
Krátký, Michal, 72
Krömer, Pavel, 108
Krulǐs, Martin, 60
Kurš, Jan, 131
Kvassay, Marcel, 50

Laclav́ık, Michal, 50
Lokoč, Jakub, 22
Loupal, Pavel, 139

Martinovič, Jan, 118
Mlýnková, Irena, 38
Moravec, Pavel, 13

Nečaský, Martin, 38, 96
Novák, Jǐŕı, 1

Obadi, Gamila, 118
Ochodková, Elǐska, 108, 155

Platoš, Jan, 72, 108

Richta, Karel, 139

Schaefer, Gerald, 175
Skopal, Tomáš, 22
Slaninová, Kateřina, 118
Snášel, Václav, 108, 118, 155

Vraný, Jan, 131

Walder, Jǐŕı, 72
Wozniak, Michal, 186

Yaghob, Jakub, 60

	Preface
	Committees
	Table of Contents
	Parametrised Hausdorff Distance as a Non-Metric Similarity Model for Tandem Mass Spectrometry
	Jirí Novák, David Hoksza

	Two-step Modified SOM for Parallel Calculation
	Petr Gajdoš, Pavel Moravec

	Answering Metric Skyline Queries by PM-tree
	Tomáš Skopal, Jakub Lokoc

	A Framework for Efficient Design, Maintaining, and Evolution of a System of XML Applications
	Martin Necaský, Irena Mlýnková

	Reconstructing Social Networks from Emails
	Marcel Kvassay, Michal Laclavík, Štefan Dlugolinský

	Efficient Implementation of XPath Processor on Multi-Core CPUs
	Martin Kruliš, Jakub Yaghob

	Fast Fibonacci Encoding Algorithm
	Jirí Walder, Michal Krátký, Jan Platoš

	iXUPT: Indexing XML Using Path Templates
	Tomáš Bartoš, Ján Kasarda

	Reverse-engineering of XML Schemas: A Survey
	Jakub Klímek, Martin Necaský

	Evolving Quasigroups by Genetic Algorithms
	Václav Snášel, Jirí Dvorský, Eliška Ochodková, Pavel Krömer, Jan Platoš, Ajith Abraham

	Using Spectral Clustering for Finding Students' Patterns of Behavior in Social Networks
	Gamila Obadi, Pavla Dráždilová, Jan Martinovic, Katerina Slaninová, Václav Snášel

	Deferred node-copying scheme for XQuery processors
	Jan Kurš, Jan Vraný

	Denotational Semantics of the
	Pavel Loupal, Karel Richta

	Modeling and Verification of Priority Assignment in Real-Time Databases Using Uppaal
	Martin Kot

	Testing Quasigroup Identities using Product of Sequence
	Eliška Ochodková, Jirí Dvorský, Václav Snášel, Ajith Abraham

	Database Trends and Directions: Current Challenges and Opportunities
	George Feuerlicht

	Content-based retrieval of compressed images
	Gerald Schaefer

	Chosen Problems of Designing Effective Multiple Classifier Systems
	Michal Wozniak

	Author Index

